Understanding the Refrigerant Recharge Process in AC Repairs

carbon monoxide testing

Understanding the intricacies of air conditioning systems can be a daunting task, especially when it comes to recognizing the signs that your system may need a refrigerant recharge. While many homeowners focus on routine maintenance like changing filters and cleaning vents, the role of refrigerant is often overlooked until performance issues arise. Recognizing these signs early can prevent larger issues and extend the life of your AC unit.


One of the most telling signs that your AC system may need a refrigerant recharge is a noticeable decline in cooling efficiency. If you find that your home is not reaching the desired temperature or if certain rooms are cooler than others, it might indicate a low refrigerant level. Refrigerant is crucial for absorbing heat from indoor air and releasing it outside; without adequate levels, this process can't occur effectively, leaving you with an uncomfortable living environment.


Another indicator is the presence of ice on your AC unit's evaporator coils. This might seem counterintuitive-ice forming in an appliance designed to cool-but it's actually a red flag for potential refrigerant issues. A sudden loss of airflow might indicate Ductless mini split repair your HVAC technician can assess the best solution.. When refrigerant levels are insufficient, the pressure within the cooling coil drops too low, causing moisture in the air to freeze upon contact with the coils. Over time, this ice buildup can lead to further complications like compressor damage.




Understanding the Refrigerant Recharge Process in AC Repairs - carbon monoxide testing

  1. smart thermostat installation
  2. HVAC duct sealing
  3. heat exchanger inspection

In addition to visible ice, listen for unusual noises coming from your AC unit. A hissing or bubbling sound can often point to a refrigerant leak-a common cause behind depleted refrigerant levels requiring a recharge. These sounds result from escaping gas through small holes or cracks in coils or lines. Addressing these leaks promptly ensures that recharging efforts are effective and lasting.


An increase in energy bills without any corresponding rise in usage might also signal that your AC requires attention regarding its refrigerant levels. When an air conditioner struggles due to low refrigerant, it works harder and longer cycles are needed to achieve set temperatures, leading inevitably to higher electricity consumption.


Finally, if you've noticed that your AC takes longer than usual to start cooling after being switched on-or if it cycles on and off more frequently-it's wise to consider having its refrigerant checked by professionals. Such operational inefficiencies are symptomatic of underlying problems typically associated with inadequate refrigerants.


In conclusion, while modern air conditioners are marvels of engineering designed for durability and efficiency, they still rely heavily on adequate amounts of refrigerants for optimal functioning. Being vigilant about changes in performance and understanding these vital signs helps ensure timely interventions such as recharges when necessary-ultimately leading not only to comfort but also cost savings over time by preventing major repairs or replacements down the road. As always with HVAC systems, consulting with certified technicians provides peace of mind alongside technical expertise essential for maintaining home comfort effectively year-round.

Signs That Your AC System May Need a Refrigerant Recharge

Tools and Equipment Required for a Refrigerant Recharge Process

Understanding the refrigerant recharge process in air conditioning (AC) repairs is critical for anyone involved in HVAC maintenance or repair. A successful refrigerant recharge not only ensures optimal cooling performance but also extends the lifespan of the AC unit while enhancing energy efficiency. To achieve this, having the right tools and equipment on hand is essential.


Firstly, a manifold gauge set is indispensable. This tool measures the pressure of refrigerants within the system, allowing technicians to diagnose potential issues accurately. The manifold gauge set typically includes hoses and gauges for both high and low-pressure sides, making it a versatile tool for checking system performance during a recharge.


Next, you'll need a vacuum pump.

Understanding the Refrigerant Recharge Process in AC Repairs - heating system replacement

  1. carbon monoxide testing
  2. heating system replacement
  3. evaporator coil cleaning
This device removes any moisture or air from the AC system before adding new refrigerant. Moisture inside an AC unit can cause severe damage by freezing and blocking airflow or corroding components; thus, using a vacuum pump ensures these contaminants are eliminated.


Refrigerant scales are another crucial piece of equipment. Accurate measurement is key when adding refrigerant to avoid overcharging or undercharging the system, which can lead to inefficiencies or even damage. Refrigerant scales provide precise readings that help technicians add just the right amount of refrigerant to restore optimal function.


A refrigerant recovery machine is also necessary if you're dealing with systems that still contain old refrigerants. These machines safely extract used refrigerants from an AC system so they can be recycled or disposed of in accordance with environmental regulations. Using such a machine not only complies with legal requirements but also helps protect our environment from harmful emissions.


Safety gear should never be overlooked when performing a refrigerant recharge. Protective eyewear and gloves are vital to safeguard against accidental exposure to chemicals that could result in injury. Additionally, ensuring proper ventilation in your workspace minimizes inhalation risks associated with certain types of refrigerants.


Finally, having an assortment of wrenches and screwdrivers at your disposal will aid in accessing various parts of the AC unit during repairs and recharges. These basic hand tools allow technicians to open panels and connect gauges securely without damaging delicate components.


In conclusion, understanding the tools and equipment required for a refrigerant recharge process is essential for effective AC repairs. Each tool serves a specific purpose that collectively contributes to maintaining an efficient and safe working environment while ensuring optimal performance of air conditioning units. With these tools at your disposal, you can confidently approach any refrigerant recharge task with precision and care.

Step-by-Step Guide to Safely Recharging Your AC System

Recharging the air conditioning (AC) system in your vehicle or home can seem like a daunting task, but with a step-by-step guide, you can accomplish it safely and efficiently. Understanding the refrigerant recharge process is crucial for anyone looking to perform AC repairs, as it ensures that your system functions properly and maintains optimal cooling performance.


The first step in this process is preparation. Before you begin, make sure you have the necessary tools and equipment. This includes safety goggles, gloves, a refrigerant recharge kit, pressure gauges, and a thermometer. Safety should always be your top priority when working with refrigerants due to their potentially harmful effects on both humans and the environment.


Once you're prepared, it's essential to diagnose your AC system's current state. Start by turning on the AC unit to its maximum cooling setting and let it run for a few minutes.

Understanding the Refrigerant Recharge Process in AC Repairs - heating system replacement

  1. geothermal heating and cooling
  2. HVAC installation
  3. refrigeration repair
This will help you determine whether there are any obvious issues such as unusual noises or inadequate cooling. Checking the pressure levels using pressure gauges can also provide valuable insights into whether your system needs recharging.


If you've confirmed that recharging is necessary, locate the low-pressure service port of your AC system. In most vehicles, this port is situated between the compressor and evaporator on the larger of two metal pipes leading from the compressor. Attach your refrigerant canister to this port via the hose provided in your recharge kit.


With everything securely connected, it's time to add refrigerant to the system slowly. This involves opening the valve on your canister while monitoring both pressure levels and temperature readings. The goal here is to maintain balance; overcharging could cause damage while undercharging may not resolve existing issues.


Throughout this process, patience is key. Allow time for adjustments between small increments of added refrigerant so that pressure levels stabilize adequately without exceeding recommended limits specified by manufacturers or guidelines provided with your recharge kit.


After successfully adding sufficient amounts of refrigerant into an otherwise functioning AC unit - indicated by balanced pressures within optimal ranges - take another test drive (if working on vehicles) or check interior temperatures closely (in homes). You should notice improved performance alongside efficient cooling results compared against initial conditions observed prior engaging upon repairs themselves – signaling completion!


Finally remember proper disposal procedures regarding leftover supplies: never release unused gases directly atmospherically because doing so contributes significantly towards global warming potential factors associated greenhouse effect-related concerns worldwide today! Instead consult local recycling centers about safe handling practices designed specifically manage these situations responsibly wherever possible ensuring minimal environmental impact overall long term future generations alike benefit equally well!


By following these carefully outlined steps involved during each stage throughout entire operation itself from start finish inclusive all necessary precautions taken along way rest assured knowing accomplished task thoroughly competently manner befitting true professional DIY enthusiast alike!

Step-by-Step Guide to Safely Recharging Your AC System
Common Mistakes to Avoid During the Refrigerant Recharge Process

Common Mistakes to Avoid During the Refrigerant Recharge Process

When it comes to maintaining air conditioning systems, the refrigerant recharge process is a crucial aspect that requires precision and care. However, even seasoned technicians can fall prey to common mistakes that may compromise the efficiency of an AC unit or even lead to costly repairs. Understanding these pitfalls and how to avoid them is essential for ensuring optimal performance and longevity of air conditioning systems.


One of the most prevalent errors during refrigerant recharge is neglecting the importance of accurate measurement. Overcharging or undercharging refrigerant can lead to significant issues such as decreased cooling efficiency, increased energy consumption, or damage to the compressor. It is imperative for technicians to use precise tools like manifold gauges and digital scales to measure the exact amount needed according to manufacturer specifications. Ensuring that the system has neither too much nor too little refrigerant will uphold its performance and prevent unnecessary strain on components.


Another common mistake is failing to properly identify leaks in the refrigeration system before recharging. Simply adding more refrigerant without addressing potential leaks is akin to applying a band-aid over a deeper wound. Leaks not only decrease system efficiency but also pose environmental concerns due to the release of harmful substances into the atmosphere. Therefore, conducting a thorough inspection with leak detection tools should be a prerequisite step in any recharge process.


Furthermore, overlooking safety protocols can result in accidents or equipment damage during refrigerant handling. Refrigerants are often stored under pressure and may be hazardous if mishandled. Technicians must wear appropriate protective gear, such as gloves and goggles, and follow industry guidelines for safe handling practices. Additionally, using appropriate recovery machines ensures that old refrigerant is safely removed from systems without venting into the environment.


Lastly, ignoring proper documentation can lead to confusion and compliance issues down the line. Keeping detailed records of each service visit—including measurements taken, refrigerant types used, and any anomalies observed—ensures transparency and facilitates future maintenance efforts. This practice not only aids technicians in tracking performance trends but also helps in adhering to regulatory standards.


In conclusion, while recharging an air conditioner's refrigerant may seem straightforward at first glance, several nuances require attention to avoid common mistakes that could affect system performance or safety. By focusing on accurate measurements, addressing potential leaks prior to recharging, adhering strictly to safety protocols during handling procedures, and maintaining comprehensive documentation throughout each service call—technicians can ensure efficient operation while safeguarding both their clients' investments as well as environmental integrity over time.

Environmental Considerations and Regulations Regarding Refrigerants

In the world of air conditioning repairs, understanding the refrigerant recharge process is crucial not only for ensuring optimal system performance but also for adhering to environmental considerations and regulations. The role of refrigerants in cooling systems cannot be understated; they are the lifeblood that enables effective heat exchange and comfortable indoor climates. However, the environmental impact of these substances has led to stringent regulations aimed at minimizing their detrimental effects on our planet.


Refrigerants have historically been associated with environmental challenges, primarily due to their potential to contribute to ozone layer depletion and global warming. Chlorofluorocarbons (CFCs) were among the first refrigerants identified as harmful, leading to international agreements like the Montreal Protocol aimed at phasing them out. As a result, hydrochlorofluorocarbons (HCFCs) and later hydrofluorocarbons (HFCs) were introduced as alternatives, though they too have significant global warming potential.


The modern landscape of refrigerant use is governed by a commitment to sustainability and reduced environmental impact. This commitment is reflected in regulations such as the Kigali Amendment to the Montreal Protocol, which targets a phasedown of HFCs globally. In alignment with these international efforts, many countries have enacted local laws mandating specific guidelines for handling refrigerants during AC repairs.


When undertaking a refrigerant recharge in an air conditioning system, technicians must adhere strictly to these regulations. Proper training and certification are often required for professionals working with refrigerants. These certifications ensure that technicians understand how to handle these substances safely and responsibly, preventing accidental releases into the atmosphere.


One critical aspect of compliance involves using proper equipment designed for recovery and recycling of refrigerants during maintenance or repair processes. This equipment minimizes emissions by capturing any leaked or surplus refrigerant so it can be properly disposed of or reused according to regulatory standards.


Moreover, selecting environmentally friendly refrigerants has become an industry norm. Technicians are encouraged to use alternatives with lower global warming potentials such as hydrofluoroolefins (HFOs) or natural options like carbon dioxide and ammonia where applicable.


In conclusion, while understanding the technical aspects of recharging AC systems is vital for efficiency and effectiveness, equally important are the environmental considerations intertwined with this process. By adhering to established regulations and embracing sustainable practices, we not only ensure compliance but also contribute positively toward reducing our ecological footprint-preserving both comfort indoors and health outdoors for future generations. The conscientious approach towards managing refrigerants today reflects a broader responsibility that extends beyond mere technical proficiency; it embodies an ethical commitment to safeguarding our environment through informed action in every repair task undertaken.

Environmental Considerations and Regulations Regarding Refrigerants
When to Seek Professional Help for AC Repairs and Maintenance

Air conditioning systems are a crucial component of modern comfort, providing relief from the sweltering heat of summer. However, like all mechanical systems, they require regular maintenance to function efficiently and effectively. One common issue that homeowners encounter with their air conditioners is the need for refrigerant recharge. Understanding when to seek professional help for AC repairs, especially concerning the refrigerant recharge process, is essential for maintaining the longevity and performance of your system.


Refrigerant is a vital element in an air conditioning unit's cooling cycle. It absorbs heat from the indoor air and releases it outside, thus cooling the interior space. Over time, due to leaks or other issues, the levels of refrigerant can diminish, leading to decreased efficiency and increased energy consumption. A clear sign that your AC might need a refrigerant recharge includes noticing that it blows warm air instead of cool air or if there is ice forming on the coils. These symptoms indicate that your AC system isn't operating optimally and may necessitate professional intervention.


The process of recharging an AC system with refrigerant is not as simple as refilling fuel in a car; it requires specialized knowledge and equipment. The Environmental Protection Agency (EPA) mandates that only certified professionals handle refrigerants because improper handling can lead to environmental harm due to potential ozone depletion and global warming consequences if released into the atmosphere.


Moreover, diagnosing whether your system truly needs more refrigerant involves more than just topping off levels. A skilled technician will perform a comprehensive check-up of your entire HVAC system to ensure there are no underlying problems such as leaks or faulty components causing low refrigerant levels in the first place. Addressing these root causes is crucial because merely adding more refrigerant without fixing leaks would be a temporary solution at best.


Professional technicians have access to advanced diagnostic tools which allow them to accurately measure and adjust refrigerant levels according to manufacturer specifications. This precision ensures that your AC operates at peak efficiency while preventing potential damage caused by overcharging or undercharging—both of which can lead to costly repairs down the line.


Furthermore, seeking professional help provides peace of mind knowing that any work performed complies with safety standards and regulations set forth by industry bodies. Professional repair services also often come with warranties on labor and parts used during maintenance or repair tasks, offering additional security against future issues.


In conclusion, understanding when to seek professional help for AC repairs related to refrigerant recharge is crucial for maintaining system efficiency and avoiding unnecessary expenses associated with amateur attempts at DIY fixes. Engaging certified HVAC professionals not only ensures compliance with environmental regulations but also guarantees accurate diagnosis and effective long-term solutions tailored specifically for your unit's needs. As such, protecting both personal comfort within homes as well as contributing positively towards environmental conservation efforts becomes simpler through informed decisions backed by expert guidance within this field.

 

An air filter being cleaned

Indoor air quality (IAQ) is the air quality within buildings and structures. Poor indoor air quality due to indoor air pollution is known to affect the health, comfort, and well-being of building occupants. It has also been linked to sick building syndrome, respiratory issues, reduced productivity, and impaired learning in schools. Common pollutants of indoor air include: secondhand tobacco smoke, air pollutants from indoor combustion, radon, molds and other allergens, carbon monoxide, volatile organic compounds, legionella and other bacteria, asbestos fibers, carbon dioxide,[1] ozone and particulates.

Source control, filtration, and the use of ventilation to dilute contaminants are the primary methods for improving indoor air quality. Although ventilation is an integral component of maintaining good indoor air quality, it may not be satisfactory alone.[2] In scenarios where outdoor pollution would deteriorate indoor air quality, other treatment devices such as filtration may also be necessary.[3]

IAQ is evaluated through collection of air samples, monitoring human exposure to pollutants, analysis of building surfaces, and computer modeling of air flow inside buildings. IAQ is part of indoor environmental quality (IEQ), along with other factors that exert an influence on physical and psychological aspects of life indoors (e.g., lighting, visual quality, acoustics, and thermal comfort).[4]

Indoor air pollution is a major health hazard in developing countries and is commonly referred to as "household air pollution" in that context.[5] It is mostly relating to cooking and heating methods by burning biomass fuel, in the form of wood, charcoal, dung, and crop residue, in indoor environments that lack proper ventilation. Millions of people, primarily women and children, face serious health risks. In total, about three billion people in developing countries are affected by this problem. The World Health Organization (WHO) estimates that cooking-related indoor air pollution causes 3.8 million annual deaths.[6] The Global Burden of Disease study estimated the number of deaths in 2017 at 1.6 million.[7]

Definition

[edit]

For health reasons it is crucial to breathe clean air, free from chemicals and toxicants as much as possible. It is estimated that humans spend approximately 90% of their lifetime indoors[8] and that indoor air pollution in some places can be much worse than that of the ambient air.[9][10]

Various factors contribute to high concentrations of pollutants indoors, ranging from influx of pollutants from external sources, off-gassing by furniture, furnishings including carpets, indoor activities (cooking, cleaning, painting, smoking, etc. in homes to using office equipment in offices), thermal comfort parameters such as temperature, humidity, airflow and physio-chemical properties of the indoor air.[citation needed] Air pollutants can enter a building in many ways, including through open doors or windows. Poorly maintained air conditioners/ventilation systems can harbor mold, bacteria, and other contaminants, which are then circulated throughout indoor spaces, contributing to respiratory problems and allergies.

There have been many debates among indoor air quality specialists about the proper definition of indoor air quality and specifically what constitutes "acceptable" indoor air quality.

Health effects

[edit]
Share of deaths from indoor air pollution. Darker colors mean higher numbers.

IAQ is significant for human health as humans spend a large proportion of their time in indoor environments. Americans and Europeans on average spend approximately 90% of their time indoors.[11][12]

The World Health Organization (WHO) estimates that 3.2 million people die prematurely every year from illnesses attributed to indoor air pollution caused by indoor cooking, with over 237 thousand of these being children under 5. These include around an eighth of all global ischaemic heart disease, stroke, and lung cancer deaths. Overall the WHO estimated that poor indoor air quality resulted in the loss of 86 million healthy life years in 2019.[13]

Studies in the UK and Europe show exposure to indoor air pollutants, chemicals and biological contamination can irritate the upper airway system, trigger or exacerbate asthma and other respiratory or cardiovascular conditions, and may even have carcinogenic effects.[14][15][16][17][18][19]

Poor indoor air quality can cause sick building syndrome. Symptoms include burning of the eyes, scratchy throat, blocked nose, and headaches.[20]

Common pollutants

[edit]

Generated by indoor combustion

[edit]
a 3-stone stove
A traditional wood-fired 3-stone stove in Guatemala, which causes indoor air pollution

Indoor combustion, such as for cooking or heating, is a major cause of indoor air pollution and causes significant health harms and premature deaths. Hydrocarbon fires cause air pollution. Pollution is caused by both biomass and fossil fuels of various types, but some forms of fuels are more harmful than others.

Indoor fire can produce black carbon particles, nitrogen oxides, sulfur oxides, and mercury compounds, among other emissions.[21] Around 3 billion people cook over open fires or on rudimentary cook stoves. Cooking fuels are coal, wood, animal dung, and crop residues.[22] IAQ is a particular concern in low and middle-income countries where such practices are common.[23]

Cooking using natural gas (also called fossil gas, methane gas or simply gas) is associated with poorer indoor air quality. Combustion of gas produces nitrogen dioxide and carbon monixide, and can lead to increased concentrations of nitrogen dioxide throughout the home environment which is linked to respiratory issues and diseases.[24][25]

Carbon monoxide

[edit]

One of the most acutely toxic indoor air contaminants is carbon monoxide (CO), a colourless and odourless gas that is a by-product of incomplete combustion. Carbon monoxide may be emitted from tobacco smoke and generated from malfunctioning fuel burning stoves (wood, kerosene, natural gas, propane) and fuel burning heating systems (wood, oil, natural gas) and from blocked flues connected to these appliances.[26] In developed countries the main sources of indoor CO emission come from cooking and heating devices that burn fossil fuels and are faulty, incorrectly installed or poorly maintained.[27] Appliance malfunction may be due to faulty installation or lack of maintenance and proper use.[26] In low- and middle-income countries the most common sources of CO in homes are burning biomass fuels and cigarette smoke.[27]

Health effects of CO poisoning may be acute or chronic and can occur unintentionally or intentionally (self-harm). By depriving the brain of oxygen, acute exposure to carbon monoxide may have effects on the neurological system (headache, nausea, dizziness, alteration in consciousness and subjective weakness), the cardiovascular and respiratory systems (myocardial infarction, shortness of breath, or rapid breathing, respiratory failure). Acute exposure can also lead to long-term neurological effects such as cognitive and behavioural changes. Severe CO poisoning may lead to unconsciousness, coma and death. Chronic exposure to low concentrations of carbon monoxide may lead to lethargy, headaches, nausea, flu-like symptoms and neuropsychological and cardiovascular issues.[28][26]

The WHO recommended levels of indoor CO exposure in 24 hours is 4 mg/m3.[29] Acute exposure should not exceed 10 mg/m3 in 8 hours, 35 mg/m3 in one hour and 100 mg/m3 in 15 minutes.[27]

Secondhand tobacco smoke

[edit]

Secondhand smoke is tobacco smoke which affects people other than the 'active' smoker. It is made up of the exhaled smoke (15%) and mostly of smoke coming from the burning end of the cigarette, known as sidestream smoke (85%).[30]

Secondhand smoke contains more than 7000 chemicals, of which hundreds are harmful to health.[30] Secondhand tobacco smoke includes both a gaseous and a particulate materials which, with particular hazards arising from levels of carbon monoxide and very small particulates (fine particulate matter, especially PM2.5 and PM10) which get into the bronchioles and alveoles in the lung.[31] Inhaling secondhand smoke on multiple occasions can cause asthma, pneumonia, lung cancer, and sudden infant death syndrome, among other conditions.[32]

Thirdhand smoke (THS) refers to chemicals that settle on objects and bodies indoors after smoking. Exposure to thirdhand smoke can happen even after the actual cigarette smoke is not present anymore and affect those entering the indoor environment much later. Toxic substances of THS can react with other chemicals in the air and produce new toxic chemicals that are otherwise not present in cigarettes.[33]

The only certain method to improve indoor air quality as regards secondhand smoke is to eliminate smoking indoors.[34] Indoor e-cigarette use also increases home particulate matter concentrations.[35]

Particulates

[edit]

Atmospheric particulate matter, also known as particulates, can be found indoors and can affect the health of occupants. Indoor particulate matter can come from different indoor sources or be created as secondary aerosols through indoor gas-to-particle reactions. They can also be outdoor particles that enter indoors. These indoor particles vary widely in size, ranging from nanomet (nanoparticles/ultrafine particles emitted from combustion sources) to micromet (resuspensed dust).[36] Particulate matter can also be produced through cooking activities. Frying produces higher concentrations than boiling or grilling and cooking meat produces higher concentrations than cooking vegetables.[37] Preparing a Thanksgiving dinner can produce very high concentrations of particulate matter, exceeding 300 μg/m3.[38]

Particulates can penetrate deep into the lungs and brain from blood streams, causing health problems such as heart disease, lung disease, cancer and preterm birth.[39]

Generated from building materials, furnishing and consumer products

[edit]

Volatile organic compounds

[edit]

Volatile organic compounds (VOCs) include a variety of chemicals, some of which may have short- and long-term adverse health effects. There are numerous sources of VOCs indoors, which means that their concentrations are consistently higher indoors (up to ten times higher) than outdoors.[40] Some VOCs are emitted directly indoors, and some are formed through the subsequent chemical reactions that can occur in the gas-phase, or on surfaces.[41][42] VOCs presenting health hazards include benzene, formaldehyde, tetrachloroethylene and trichloroethylene.[43]

VOCs are emitted by thousands of indoor products. Examples include: paints, varnishes, waxes and lacquers, paint strippers, cleaning and personal care products, pesticides, building materials and furnishings, office equipment such as copiers and printers, correction fluids and carbonless copy paper, graphics and craft materials including glues and adhesives, permanent markers, and photographic solutions.[44] Chlorinated drinking water releases chloroform when hot water is used in the home. Benzene is emitted from fuel stored in attached garages.

Human activities such as cooking and cleaning can also emit VOCs.[45][46] Cooking can release long-chain aldehydes and alkanes when oil is heated and terpenes can be released when spices are prepared and/or cooked.[45] Leaks of natural gas from cooking appliances have been linked to elevated levels of VOCs including benzene in homes in the USA.[47] Cleaning products contain a range of VOCs, including monoterpenes, sesquiterpenes, alcohols and esters. Once released into the air, VOCs can undergo reactions with ozone and hydroxyl radicals to produce other VOCs, such as formaldehyde.[46]

Health effects include eye, nose, and throat irritation; headaches, loss of coordination, nausea; and damage to the liver, kidney, and central nervous system.[48]

Testing emissions from building materials used indoors has become increasingly common for floor coverings, paints, and many other important indoor building materials and finishes.[49] Indoor materials such as gypsum boards or carpet act as VOC 'sinks', by trapping VOC vapors for extended periods of time, and releasing them by outgassing. The VOCs can also undergo transformation at the surface through interaction with ozone.[42] In both cases, these delayed emissions can result in chronic and low-level exposures to VOCs.[50]

Several initiatives aim to reduce indoor air contamination by limiting VOC emissions from products. There are regulations in France and in Germany, and numerous voluntary ecolabels and rating systems containing low VOC emissions criteria such as EMICODE,[51] M1,[52] Blue Angel[53] and Indoor Air Comfort[54] in Europe, as well as California Standard CDPH Section 01350[55] and several others in the US. Due to these initiatives an increasing number of low-emitting products became available to purchase.

At least 18 microbial VOCs (MVOCs) have been characterised[56][57] including 1-octen-3-ol (mushroom alcohol), 3-Methylfuran, 2-pentanol, 2-hexanone, 2-heptanone, 3-octanone, 3-octanol, 2-octen-1-ol, 1-octene, 2-pentanone, 2-nonanone, borneol, geosmin, 1-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, and thujopsene. The last four are products of Stachybotrys chartarum, which has been linked with sick building syndrome.[56]

Asbestos fibers

[edit]

Many common building materials used before 1975 contain asbestos, such as some floor tiles, ceiling tiles, shingles, fireproofing, heating systems, pipe wrap, taping muds, mastics, and other insulation materials. Normally, significant releases of asbestos fiber do not occur unless the building materials are disturbed, such as by cutting, sanding, drilling, or building remodelling. Removal of asbestos-containing materials is not always optimal because the fibers can be spread into the air during the removal process. A management program for intact asbestos-containing materials is often recommended instead.

When asbestos-containing material is damaged or disintegrates, microscopic fibers are dispersed into the air. Inhalation of asbestos fibers over long exposure times is associated with increased incidence of lung cancer, mesothelioma, and asbestosis. The risk of lung cancer from inhaling asbestos fibers is significantly greater for smokers. The symptoms of disease do not usually appear until about 20 to 30 years after the first exposure to asbestos.

Although all asbestos is hazardous, products that are friable, e.g. sprayed coatings and insulation, pose a significantly higher hazard as they are more likely to release fibers to the air.[58]

Microplastics

[edit]

Microplastic is a type of airborne particulates and is found to prevail in air.[59][60][61][62] A 2017 study found indoor airborne microfiber concentrations between 1.0 and 60.0 microfibers per cubic meter (33% of which were found to be microplastics).[63] Airborne microplastic dust can be produced during renovation, building, bridge and road reconstruction projects[64] and the use of power tools.[65]

Ozone

[edit]

Indoors ozone (O3) is produced by certain high-voltage electric devices (such as air ionizers), and as a by-product of other types of pollution. It appears in lower concentrations indoors than outdoors, usually at 0.2-0.7 of the outdoor concentration.[66] Typically, most ozone is lost to surface reactions indoors, rather than to reactions in air, due to the large surface to volume ratios found indoors.[67]

Outdoor air used for ventilation may have sufficient ozone to react with common indoor pollutants as well as skin oils and other common indoor air chemicals or surfaces. Particular concern is warranted when using "green" cleaning products based on citrus or terpene extracts, because these chemicals react very quickly with ozone to form toxic and irritating chemicals[46] as well as fine and ultrafine particles.[68] Ventilation with outdoor air containing elevated ozone concentrations may complicate remediation attempts.[69]

The WHO standard for ozone concentration is 60 μg/m3 for long-term exposure and 100 μg/m3 as the maximum average over an 8-hour period.[29] The EPA standard for ozone concentration is 0.07 ppm average over an 8-hour period.[70]

Biological agents

[edit]

Mold and other allergens

[edit]

Occupants in buildings can be exposed to fungal spores, cell fragments, or mycotoxins which can arise from a host of means, but there are two common classes: (a) excess moisture induced growth of mold colonies and (b) natural substances released into the air such as animal dander and plant pollen.[71]

While mold growth is associated with high moisture levels,[72] it is likely to grow when a combination of favorable conditions arises. As well as high moisture levels, these conditions include suitable temperatures, pH and nutrient sources.[73] Mold grows primarily on surfaces, and it reproduces by releasing spores, which can travel and settle in different locations. When these spores experience appropriate conditions, they can germinate and lead to mycelium growth.[74] Different mold species favor different environmental conditions to germinate and grow, some being more hydrophilic (growing at higher levels of relative humidity) and other more xerophilic (growing at levels of relative humidity as low as 75–80%).[74][75]

Mold growth can be inhibited by keeping surfaces at conditions that are further from condensation, with relative humidity levels below 75%. This usually translates to a relative humidity of indoor air below 60%, in agreement with the guidelines for thermal comfort that recommend a relative humidity between 40 and 60 %. Moisture buildup in buildings may arise from water penetrating areas of the building envelope or fabric, from plumbing leaks, rainwater or groundwater penetration, or from condensation due to improper ventilation, insufficient heating or poor thermal quality of the building envelope.[76] Even something as simple as drying clothes indoors on radiators can increase the risk of mold growth, if the humidity produced is not able to escape the building via ventilation.[77]

Mold predominantly affects the airways and lungs. Known effects of mold on health include asthma development and exacerbation,[78] with children and elderly at greater risk of more severe health impacts.[79] Infants in homes with mold have a much greater risk of developing asthma and allergic rhinitis.[80][71] More than half of adult workers in moldy or humid buildings suffer from nasal or sinus symptoms due to mold exposure.[71] Some varieties of mold contain toxic compounds (mycotoxins). However, exposure to hazardous levels of mycotoxin via inhalation is not possible in most cases, as toxins are produced by the fungal body and are not at significant levels in the released spores.

Legionella

[edit]

Legionnaires' disease is caused by a waterborne bacterium Legionella that grows best in slow-moving or still, warm water. The primary route of exposure is through the creation of an aerosol effect, most commonly from evaporative cooling towers or showerheads. A common source of Legionella in commercial buildings is from poorly placed or maintained evaporative cooling towers, which often release water in an aerosol which may enter nearby ventilation intakes. Outbreaks in medical facilities and nursing homes, where patients are immuno-suppressed and immuno-weak, are the most commonly reported cases of Legionellosis. More than one case has involved outdoor fountains at public attractions. The presence of Legionella in commercial building water supplies is highly under-reported, as healthy people require heavy exposure to acquire infection.

Legionella testing typically involves collecting water samples and surface swabs from evaporative cooling basins, shower heads, faucets/taps, and other locations where warm water collects. The samples are then cultured and colony forming units (cfu) of Legionella are quantified as cfu/liter.

Legionella is a parasite of protozoans such as amoeba, and thus requires conditions suitable for both organisms. The bacterium forms a biofilm which is resistant to chemical and antimicrobial treatments, including chlorine. Remediation for Legionella outbreaks in commercial buildings vary, but often include very hot water flushes (160 °F (71 °C)), sterilisation of standing water in evaporative cooling basins, replacement of shower heads, and, in some cases, flushes of heavy metal salts. Preventive measures include adjusting normal hot water levels to allow for 120 °F (49 °C) at the tap, evaluating facility design layout, removing faucet aerators, and periodic testing in suspect areas.

Other bacteria

[edit]
Airborne bacteria

There are many bacteria of health significance found in indoor air and on indoor surfaces. The role of microbes in the indoor environment is increasingly studied using modern gene-based analysis of environmental samples. Currently, efforts are under way to link microbial ecologists and indoor air scientists to forge new methods for analysis and to better interpret the results.[81]

A large fraction of the bacteria found in indoor air and dust are shed from humans. Among the most important bacteria known to occur in indoor air are Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae.[citation needed]

Virus

[edit]
Ninth floor layout of the Metropole Hotel in Hong Kong, showing where an outbreak of the severe acute respiratory syndrome (SARS) occurred

Viruses can also be a concern for indoor air quality. During the 2002–2004 SARS outbreak, virus-laden aerosols were found to have seeped into bathrooms from the bathroom floor drains, exacerbated by the draw of bathroom exhaust fans, resulting in the rapid spread of SARS in Amoy Gardens in Hong Kong.[82][83] Elsewhere in Hong Kong, SARS CoV RNA was found on the carpet and in the air intake vents of the Metropole Hotel, which showed that secondary environmental contamination could generate infectious aerosols and resulted in superspreading events.[84]

Carbon dioxide

[edit]

Humans are the main indoor source of carbon dioxide (CO2) in most buildings. Indoor CO2 levels are an indicator of the adequacy of outdoor air ventilation relative to indoor occupant density and metabolic activity.

Indoor CO2 levels above 500 ppm can lead to higher blood pressure and heart rate, and increased peripheral blood circulation.[85] With CO2 concentrations above 1000 ppm cognitive performance might be affected, especially when doing complex tasks, making decision making and problem solving slower but not less accurate.[86][87] However, evidence on the health effects of CO2 at lower concentrations is conflicting and it is difficult to link CO2 to health impacts at exposures below 5000 ppm – reported health outcomes may be due to the presence of human bioeffluents, and other indoor air pollutants related to inadequate ventilation.[88]

Indoor carbon dioxide concentrations can be used to evaluate the quality of a room or a building's ventilation.[89] To eliminate most complaints caused by CO2, the total indoor CO2 level should be reduced to a difference of no greater than 700 ppm above outdoor levels.[90] The National Institute for Occupational Safety and Health (NIOSH) considers that indoor air concentrations of carbon dioxide that exceed 1000 ppm are a marker suggesting inadequate ventilation.[91] The UK standards for schools say that carbon dioxide levels of 800 ppm or lower indicate that the room is well-ventilated.[92] Regulations and standards from around the world show that CO2 levels below 1000 ppm represent good IAQ, between 1000 and 1500 ppm represent moderate IAQ and greater than 1500 ppm represent poor IAQ.[88]

Carbon dioxide concentrations in closed or confined rooms can increase to 1,000 ppm within 45 minutes of enclosure. For example, in a 3.5-by-4-metre (11 ft × 13 ft) sized office, atmospheric carbon dioxide increased from 500 ppm to over 1,000 ppm within 45 minutes of ventilation cessation and closure of windows and doors.[93]

Radon

[edit]

Radon is an invisible, radioactive atomic gas that results from the radioactive decay of radium, which may be found in rock formations beneath buildings or in certain building materials themselves.

Radon is probably the most pervasive serious hazard for indoor air in the United States and Europe. It is a major cause of lung cancer, responsible for 3–14% of cases in countries, leading to tens of thousands of deaths.[94]

Radon gas enters buildings as a soil gas. As it is a heavy gas it will tend to accumulate at the lowest level. Radon may also be introduced into a building through drinking water particularly from bathroom showers. Building materials can be a rare source of radon, but little testing is carried out for stone, rock or tile products brought into building sites; radon accumulation is greatest for well insulated homes.[95] There are simple do-it-yourself kits for radon gas testing, but a licensed professional can also check homes.

The half-life for radon is 3.8 days, indicating that once the source is removed, the hazard will be greatly reduced within a few weeks. Radon mitigation methods include sealing concrete slab floors, basement foundations, water drainage systems, or by increasing ventilation.[96] They are usually cost effective and can greatly reduce or even eliminate the contamination and the associated health risks.[citation needed]

Radon is measured in picocuries per liter of air (pCi/L) or becquerel per cubic meter (Bq m-3). Both are measurements of radioactivity. The World Health Organization (WHO) sets the ideal indoor radon levels at 100 Bq/m-3.[97] In the United States, it is recommend to fix homes with radon levels at or above 4 pCi/L. At the same time it is also recommends that people think about fixing their homes for radon levels between 2 pCi/L and 4 pCi/L.[98] In the United Kingdom the ideal is presence of radon indoors is 100 Bq/m-3. Action needs to be taken in homes with 200 Bq/m−3 or more.[99]

Interactive maps of radon affected areas are available for various regions and countries of the world.[100][101][102]

IAQ and climate change

[edit]

Indoor air quality is linked inextricably to outdoor air quality. The Intergovernmental Panel on Climate Change (IPCC) has varying scenarios that predict how the climate will change in the future.[103] Climate change can affect indoor air quality by increasing the level of outdoor air pollutants such as ozone and particulate matter, for example through emissions from wildfires caused by extreme heat and drought.[104][105] Numerous predictions for how indoor air pollutants will change have been made,[106][107][108][109] and models have attempted to predict how the forecasted IPCC scenarios will vary indoor air quality and indoor comfort parameters such as humidity and temperature.[110]

The net-zero challenge requires significant changes in the performance of both new and retrofitted buildings. However, increased energy efficient housing will trap pollutants inside, whether produced indoors or outdoors, and lead to an increase in human exposure.[111][112]

Indoor air quality standards and monitoring

[edit]

Quality guidelines and standards

[edit]

For occupational exposure, there are standards, which cover a wide range of chemicals, and applied to healthy adults who are exposed over time at workplaces (usually industrial environments).These are published by organisations such as Occupational Safety and Health Administration (OSHA), the National Institute for Occupational Safety and Health (NIOSH), the UK Health and Safety Executive (HSE).

There is no consensus globally about indoor air quality standards, or health-based guidelines. However, there are regulations from some individual countries and from health organisations. For example, the World Health Organization (WHO) has published health-based global air quality guidelines for the general population that are applicable both to outdoor and indoor air,[29] as well as the WHO IAQ guidelines for selected compounds,[113] whereas the UK Health Security Agency published IAQ guidelines for selected VOCs.[114] The Scientific and Technical Committee (STC34) of the International Society of Indoor Air Quality and Climate (ISIAQ) created an open database that collects indoor environmental quality guidelines worldwide.[115] The database is focused on indoor air quality (IAQ), but is currently extended to include standards, regulations, and guidelines related to ventilation, comfort, acoustics, and lighting.[116][117]

Real-time monitoring

[edit]

Since indoor air pollutants can adversely affect human health, it is important to have real-time indoor air quality assessment/monitoring system that can help not only in the improvement of indoor air quality but also help in detection of leaks, spills in a work environment and boost energy efficiency of buildings by providing real-time feedback to the heating, ventilation, and air conditioning (HVAC) system(s).[118] Additionally, there have been enough studies that highlight the correlation between poor indoor air quality and loss of performance and productivity of workers in an office setting.[119]  

Combining the Internet of Things (IoT) technology with real-time IAQ monitoring systems has  tremendously gained momentum and popularity as interventions can be done based on the real-time sensor data and thus help in the IAQ improvement.[120]   

Improvement measures

[edit]

Indoor air quality can be addressed, achieved or maintained during the design of new buildings or as mitigating measures in existing buildings. A hierarchy of measures has been proposed by the Institute of Air Quality Management. It emphasises removing pollutant sources, reducing emissions from any remaining sources, disrupting pathways between sources and the people exposed, protecting people from exposure to pollutants, and removing people from areas with poor air quality.[121]

A report assisted by the Institute for Occupational Safety and Health of the German Social Accident Insurance can support in the systematic investigation of individual health problems arising at indoor workplaces, and in the identification of practical solutions.[122]

Source control

[edit]

HVAC design

[edit]

Environmentally sustainable design concepts include aspects of commercial and residential heating, ventilation and air-conditioning (HVAC) technologies. Among several considerations, one of the topics attended to is the issue of indoor air quality throughout the design and construction stages of a building's life.[citation needed]

One technique to reduce energy consumption while maintaining adequate air quality, is demand-controlled ventilation. Instead of setting throughput at a fixed air replacement rate, carbon dioxide sensors are used to control the rate dynamically, based on the emissions of actual building occupants.[citation needed]

One way of quantitatively ensuring the health of indoor air is by the frequency of effective turnover of interior air by replacement with outside air. In the UK, for example, classrooms are required to have 2.5 outdoor air changes per hour. In halls, gym, dining, and physiotherapy spaces, the ventilation should be sufficient to limit carbon dioxide to 1,500 ppm. In the US, ventilation in classrooms is based on the amount of outdoor air per occupant plus the amount of outdoor air per unit of floor area, not air changes per hour. Since carbon dioxide indoors comes from occupants and outdoor air, the adequacy of ventilation per occupant is indicated by the concentration indoors minus the concentration outdoors. The value of 615 ppm above the outdoor concentration indicates approximately 15 cubic feet per minute of outdoor air per adult occupant doing sedentary office work where outdoor air contains over 400 ppm[123] (global average as of 2023). In classrooms, the requirements in the ASHRAE standard 62.1, Ventilation for Acceptable Indoor Air Quality, would typically result in about 3 air changes per hour, depending on the occupant density. As the occupants are not the only source of pollutants, outdoor air ventilation may need to be higher when unusual or strong sources of pollution exist indoors.

When outdoor air is polluted, bringing in more outdoor air can actually worsen the overall quality of the indoor air and exacerbate some occupant symptoms related to outdoor air pollution. Generally, outdoor country air is better than indoor city air.[citation needed]

The use of air filters can trap some of the air pollutants. Portable room air cleaners with HEPA filters can be used if ventilation is poor or outside air has high level of PM 2.5.[122] Air filters are used to reduce the amount of dust that reaches the wet coils.[citation needed] Dust can serve as food to grow molds on the wet coils and ducts and can reduce the efficiency of the coils.[citation needed]

The use of trickle vents on windows is also valuable to maintain constant ventilation. They can help prevent mold and allergen build up in the home or workplace. They can also reduce the spread of some respiratory infections.[124]

Moisture management and humidity control requires operating HVAC systems as designed. Moisture management and humidity control may conflict with efforts to conserve energy. For example, moisture management and humidity control requires systems to be set to supply make-up air at lower temperatures (design levels), instead of the higher temperatures sometimes used to conserve energy in cooling-dominated climate conditions. However, for most of the US and many parts of Europe and Japan, during the majority of hours of the year, outdoor air temperatures are cool enough that the air does not need further cooling to provide thermal comfort indoors.[citation needed] However, high humidity outdoors creates the need for careful attention to humidity levels indoors. High humidity give rise to mold growth and moisture indoors is associated with a higher prevalence of occupant respiratory problems.[citation needed]

The "dew point temperature" is an absolute measure of the moisture in air. Some facilities are being designed with dew points in the lower 50s °F, and some in the upper and lower 40s °F.[citation needed] Some facilities are being designed using desiccant wheels with gas-fired heaters to dry out the wheel enough to get the required dew points.[citation needed] On those systems, after the moisture is removed from the make-up air, a cooling coil is used to lower the temperature to the desired level.[citation needed]

Commercial buildings, and sometimes residential, are often kept under slightly positive air pressure relative to the outdoors to reduce infiltration. Limiting infiltration helps with moisture management and humidity control.

Dilution of indoor pollutants with outdoor air is effective to the extent that outdoor air is free of harmful pollutants. Ozone in outdoor air occurs indoors at reduced concentrations because ozone is highly reactive with many chemicals found indoors. The products of the reactions between ozone and many common indoor pollutants include organic compounds that may be more odorous, irritating, or toxic than those from which they are formed. These products of ozone chemistry include formaldehyde, higher molecular weight aldehydes, acidic aerosols, and fine and ultrafine particles, among others. The higher the outdoor ventilation rate, the higher the indoor ozone concentration and the more likely the reactions will occur, but even at low levels, the reactions will take place. This suggests that ozone should be removed from ventilation air, especially in areas where outdoor ozone levels are frequently high.

Effect of indoor plants

[edit]
Spider plants (Chlorophytum comosum) absorb some airborne contaminants.

Houseplants together with the medium in which they are grown can reduce components of indoor air pollution, particularly volatile organic compounds (VOC) such as benzene, toluene, and xylene. Plants remove CO2 and release oxygen and water, although the quantitative impact for house plants is small. The interest in using potted plants for removing VOCs was sparked by a 1989 NASA study conducted in sealed chambers designed to replicate the environment on space stations. However, these results suffered from poor replication[125] and are not applicable to typical buildings, where outdoor-to-indoor air exchange already removes VOCs at a rate that could only be matched by the placement of 10–1000 plants/m2 of a building's floor space.[126]

Plants also appear to reduce airborne microbes and molds, and to increase humidity.[127] However, the increased humidity can itself lead to increased levels of mold and even VOCs.[128]

Since extremely high humidity is associated with increased mold growth, allergic responses, and respiratory responses, the presence of additional moisture from houseplants may not be desirable in all indoor settings if watering is done inappropriately.[129]

Institutional programs

[edit]
EPA graphic about asthma triggers

The topic of IAQ has become popular due to the greater awareness of health problems caused by mold and triggers to asthma and allergies.

In the US, the Environmental Protection Agency (EPA) has developed an "IAQ Tools for Schools" program to help improve the indoor environmental conditions in educational institutions. The National Institute for Occupational Safety and Health conducts Health Hazard Evaluations (HHEs) in workplaces at the request of employees, authorized representative of employees, or employers, to determine whether any substance normally found in the place of employment has potentially toxic effects, including indoor air quality.[130]

A variety of scientists work in the field of indoor air quality, including chemists, physicists, mechanical engineers, biologists, bacteriologists, epidemiologists, and computer scientists. Some of these professionals are certified by organizations such as the American Industrial Hygiene Association, the American Indoor Air Quality Council and the Indoor Environmental Air Quality Council.

In the UK, under the Department for Environment Food and Rural Affairs, the Air Quality Expert Group considers current knowledge on indoor air quality and provides advice to government and devolved administration ministers.[131]

At the international level, the International Society of Indoor Air Quality and Climate (ISIAQ), formed in 1991, organizes two major conferences, the Indoor Air and the Healthy Buildings series.[132]

See also

[edit]

References

[edit]
  1. ^ Carroll, GT; Kirschman, DL; Mammana, A (2022). "Increased CO2 levels in the operating room correlate with the number of healthcare workers present: an imperative for intentional crowd control". Patient Safety in Surgery. 16 (35): 35. doi:10.1186/s13037-022-00343-8. PMC 9672642. PMID 36397098.
  2. ^ ANSI/ASHRAE Standard 62.1, Ventilation for Acceptable Indoor Air Quality, ASHRAE, Inc., Atlanta, GA, US
  3. ^ Belias, Evangelos; Licina, Dusan (2022). "Outdoor PM2. 5 air filtration: optimising indoor air quality and energy". Building & Cities. 3 (1): 186–203. doi:10.5334/bc.153.
  4. ^ KMC Controls (September 24, 2015). "What's Your IQ on IAQ and IEQ?". Archived from the original on April 12, 2021. Retrieved April 12, 2021.[unreliable source?]
  5. ^ Bruce, N; Perez-Padilla, R; Albalak, R (2000). "Indoor air pollution in developing countries: a major environmental and public health challenge". Bulletin of the World Health Organization. 78 (9): 1078–92. PMC 2560841. PMID 11019457.
  6. ^ "Household air pollution and health: fact sheet". WHO. May 8, 2018. Archived from the original on November 12, 2021. Retrieved November 21, 2020.
  7. ^ Ritchie, Hannah; Roser, Max (2019). "Access to Energy". Our World in Data. Archived from the original on November 1, 2021. Retrieved April 1, 2021. According to the Global Burden of Disease study 1.6 million people died prematurely in 2017 as a result of indoor air pollution ... But it's worth noting that the WHO publishes a substantially larger number of indoor air pollution deaths..
  8. ^ Klepeis, Neil E; Nelson, William C; Ott, Wayne R; Robinson, John P; Tsang, Andy M; Switzer, Paul; Behar, Joseph V; Hern, Stephen C; Engelmann, William H (July 2001). "The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants". Journal of Exposure Science & Environmental Epidemiology. 11 (3): 231–252. Bibcode:2001JESEE..11..231K. doi:10.1038/sj.jea.7500165. PMID 11477521. S2CID 22445147. Archived from the original on March 28, 2023. Retrieved March 30, 2024.
  9. ^ U.S. Environmental Protection Agency. Office equipment: design, indoor air emissions, and pollution prevention opportunities. Air and Energy Engineering Research Laboratory, Research Triangle Park, 1995.
  10. ^ U.S. Environmental Protection Agency. Unfinished business: a comparative assessment of environmental problems, EPA-230/2-87-025a-e (NTIS PB88-127030). Office of Policy, Planning and Evaluation, Washington, DC, 1987.
  11. ^ Klepeis, Neil E; Nelson, William C; Ott, Wayne R; Robinson, John P; Tsang, Andy M; Switzer, Paul; Behar, Joseph V; Hern, Stephen C; Engelmann, William H (July 1, 2001). "The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants". Journal of Exposure Science & Environmental Epidemiology. 11 (3): 231–252. Bibcode:2001JESEE..11..231K. doi:10.1038/sj.jea.7500165. ISSN 1559-0631. PMID 11477521. Archived from the original on November 13, 2023. Retrieved November 13, 2023.
  12. ^ "Combined or multiple exposure to health stressors in indoor built environments: an evidence-based review prepared for the WHO training workshop "Multiple environmental exposures and risks": 16–18 October 2013, Bonn, Germany". World Health Organization. Regional Office for Europe. 2014. Archived from the original on November 6, 2023. Retrieved April 10, 2024.
  13. ^ "Household air pollution". World Health Organization. December 15, 2023. Archived from the original on November 12, 2021. Retrieved April 10, 2024.
  14. ^ Clark, Sierra N.; Lam, Holly C. Y.; Goode, Emma-Jane; Marczylo, Emma L.; Exley, Karen S.; Dimitroulopoulou, Sani (August 2, 2023). "The Burden of Respiratory Disease from Formaldehyde, Damp and Mould in English Housing". Environments. 10 (8): 136. doi:10.3390/environments10080136. ISSN 2076-3298.
  15. ^ "Chief Medical Officer (CMO): annual reports". GOV.UK. November 16, 2023. Retrieved May 5, 2024.
  16. ^ "Project information | Indoor air quality at home | Quality standards | NICE". www.nice.org.uk. Retrieved May 5, 2024.
  17. ^ "The inside story: Health effects of indoor air quality on children and young people". RCPCH. Retrieved May 5, 2024.
  18. ^ Halios, Christos H.; Landeg-Cox, Charlotte; Lowther, Scott D.; Middleton, Alice; Marczylo, Tim; Dimitroulopoulou, Sani (September 15, 2022). "Chemicals in European residences – Part I: A review of emissions, concentrations and health effects of volatile organic compounds (VOCs)". Science of the Total Environment. 839: 156201. Bibcode:2022ScTEn.83956201H. doi:10.1016/j.scitotenv.2022.156201. ISSN 0048-9697. PMID 35623519.
  19. ^ "Literature review on chemical pollutants in indoor air in public settings for children and overview of their health effects with a focus on schools, kindergartens and day-care centres". www.who.int. Retrieved May 5, 2024.
  20. ^ Burge, P S (February 2004). "Sick building syndrome". Occupational and Environmental Medicine. 61 (2): 185–190. doi:10.1136/oem.2003.008813. PMC 1740708. PMID 14739390.
  21. ^ Apte, K; Salvi, S (2016). "Household air pollution and its effects on health". F1000Research. 5: 2593. doi:10.12688/f1000research.7552.1. PMC 5089137. PMID 27853506. Burning of natural gas not only produces a variety of gases such as sulfur oxides, mercury compounds, and particulate matter but also leads to the production of nitrogen oxides, primarily nitrogen dioxide...The burning of biomass fuel or any other fossil fuel increases the concentration of black carbon in the air
  22. ^ "Improved Clean Cookstoves". Project Drawdown. February 7, 2020. Archived from the original on December 15, 2021. Retrieved December 5, 2020.
  23. ^ WHO indoor air quality guidelines: household fuel combustion. Geneva: World Health Organization. 2014. ISBN 978-92-4-154888-5.
  24. ^ "Clearing the Air: Gas Cooking and Pollution in European Homes". CLASP. November 8, 2023. Retrieved May 5, 2024.
  25. ^ Seals, Brady; Krasner, Andee. "Gas Stoves: Health and Air Quality Impacts and Solutions". RMI. Retrieved May 5, 2024.
  26. ^ a b c Myers, Isabella (February 2022). The efficient operation of regulation and legislation: An holistic approach to understanding the effect of Carbon Monoxide on mortality (PDF). CO Research Trust.
  27. ^ a b c Penney, David; Benignus, Vernon; Kephalopoulos, Stylianos; Kotzias, Dimitrios; Kleinman, Michael; Verrier, Agnes (2010), "Carbon monoxide", WHO Guidelines for Indoor Air Quality: Selected Pollutants, World Health Organization, ISBN 978-92-890-0213-4, OCLC 696099951, archived from the original on March 8, 2021, retrieved March 18, 2024
  28. ^ "Carbon monoxide: toxicological overview". UK Health Security Agency. May 24, 2022. Retrieved April 17, 2024.
  29. ^ a b c WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide (PDF). World Health Organization. 2021. hdl:10665/345329. ISBN 978-92-4-003422-8.[page needed]
  30. ^ a b Soleimani, Farshid; Dobaradaran, Sina; De-la-Torre, Gabriel E.; Schmidt, Torsten C.; Saeedi, Reza (March 2022). "Content of toxic components of cigarette, cigarette smoke vs cigarette butts: A comprehensive systematic review". Science of the Total Environment. 813: 152667. Bibcode:2022ScTEn.81352667S. doi:10.1016/j.scitotenv.2021.152667. PMID 34963586.
  31. ^ "Considering smoking as an air pollution problem for environmental health | Environmental Performance Index". Archived from the original on September 25, 2018. Retrieved March 21, 2018.
  32. ^ Arfaeinia, Hossein; Ghaemi, Maryam; Jahantigh, Anis; Soleimani, Farshid; Hashemi, Hassan (June 12, 2023). "Secondhand and thirdhand smoke: a review on chemical contents, exposure routes, and protective strategies". Environmental Science and Pollution Research. 30 (32): 78017–78029. Bibcode:2023ESPR...3078017A. doi:10.1007/s11356-023-28128-1. PMC 10258487. PMID 37306877.
  33. ^ Arfaeinia, Hossein; Ghaemi, Maryam; Jahantigh, Anis; Soleimani, Farshid; Hashemi, Hassan (June 12, 2023). "Secondhand and thirdhand smoke: a review on chemical contents, exposure routes, and protective strategies". Environmental Science and Pollution Research. 30 (32): 78017–78029. Bibcode:2023ESPR...3078017A. doi:10.1007/s11356-023-28128-1. ISSN 1614-7499. PMC 10258487. PMID 37306877.
  34. ^ Health, CDC's Office on Smoking and (May 9, 2018). "Smoking and Tobacco Use; Fact Sheet; Secondhand Smoke". Smoking and Tobacco Use. Archived from the original on December 15, 2021. Retrieved January 14, 2019.
  35. ^ Fernández, E; Ballbè, M; Sureda, X; Fu, M; Saltó, E; Martínez-Sánchez, JM (December 2015). "Particulate Matter from Electronic Cigarettes and Conventional Cigarettes: a Systematic Review and Observational Study". Current Environmental Health Reports. 2 (4): 423–9. Bibcode:2015CEHR....2..423F. doi:10.1007/s40572-015-0072-x. PMID 26452675.
  36. ^ Vu, Tuan V.; Harrison, Roy M. (May 8, 2019). "Chemical and Physical Properties of Indoor Aerosols". In Harrison, R. M.; Hester, R. E. (eds.). Indoor Air Pollution. The Royal Society of Chemistry (published 2019). ISBN 978-1-78801-803-6.
  37. ^ Abdullahi, Karimatu L.; Delgado-Saborit, Juana Maria; Harrison, Roy M. (February 13, 2013). "Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review". Atmospheric Environment. 71: 260–294. Bibcode:2013AtmEn..71..260A. doi:10.1016/j.atmosenv.2013.01.061. Archived from the original on May 21, 2023. Retrieved April 11, 2024.
  38. ^ Patel, Sameer; Sankhyan, Sumit; Boedicker, Erin K.; DeCarlo, Peter F.; Farmer, Delphine K.; Goldstein, Allen H.; Katz, Erin F.; Nazaroff, William W; Tian, Yilin; Vanhanen, Joonas; Vance, Marina E. (June 16, 2020). "Indoor Particulate Matter during HOMEChem: Concentrations, Size Distributions, and Exposures". Environmental Science & Technology. 54 (12): 7107–7116. Bibcode:2020EnST...54.7107P. doi:10.1021/acs.est.0c00740. ISSN 0013-936X. PMID 32391692. Archived from the original on April 28, 2023. Retrieved April 11, 2024.
  39. ^ Thangavel, Prakash; Park, Duckshin; Lee, Young-Chul (June 19, 2022). "Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview". International Journal of Environmental Research and Public Health. 19 (12): 7511. doi:10.3390/ijerph19127511. ISSN 1660-4601. PMC 9223652. PMID 35742761.
  40. ^ You, Bo; Zhou, Wei; Li, Junyao; Li, Zhijie; Sun, Yele (November 4, 2022). "A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements". Environment International. 170: 107611. Bibcode:2022EnInt.17007611Y. doi:10.1016/j.envint.2022.107611. PMID 36335895.
  41. ^ Weschler, Charles J.; Carslaw, Nicola (March 6, 2018). "Indoor Chemistry". Environmental Science & Technology. 52 (5): 2419–2428. Bibcode:2018EnST...52.2419W. doi:10.1021/acs.est.7b06387. ISSN 0013-936X. PMID 29402076. Archived from the original on November 15, 2023. Retrieved April 11, 2024.
  42. ^ a b Carter, Toby J.; Poppendieck, Dustin G.; Shaw, David; Carslaw, Nicola (January 16, 2023). "A Modelling Study of Indoor Air Chemistry: The Surface Interactions of Ozone and Hydrogen Peroxide". Atmospheric Environment. 297: 119598. Bibcode:2023AtmEn.29719598C. doi:10.1016/j.atmosenv.2023.119598.
  43. ^ Tsai, Wen-Tien (March 26, 2019). "An overview of health hazards of volatile organic compounds regulated as indoor air pollutants". Reviews on Environmental Health. 34 (1): 81–89. doi:10.1515/reveh-2018-0046. PMID 30854833.
  44. ^ "U.S. EPA IAQ – Organic chemicals". Epa.gov. August 5, 2010. Archived from the original on September 9, 2015. Retrieved March 2, 2012.
  45. ^ a b Davies, Helen L.; O'Leary, Catherine; Dillon, Terry; Shaw, David R.; Shaw, Marvin; Mehra, Archit; Phillips, Gavin; Carslaw, Nicola (August 14, 2023). "A measurement and modelling investigation of the indoor air chemistry following cooking activities". Environmental Science: Processes & Impacts. 25 (9): 1532–1548. doi:10.1039/D3EM00167A. ISSN 2050-7887. PMID 37609942.
  46. ^ a b c Harding-Smith, Ellen; Shaw, David R.; Shaw, Marvin; Dillon, Terry J.; Carslaw, Nicola (January 23, 2024). "Does green mean clean? Volatile organic emissions from regular versus green cleaning products". Environmental Science: Processes & Impacts. 26 (2): 436–450. doi:10.1039/D3EM00439B. ISSN 2050-7887. PMID 38258874.
  47. ^ Lebel, Eric D.; Michanowicz, Drew R.; Bilsback, Kelsey R.; Hill, Lee Ann L.; Goldman, Jackson S. W.; Domen, Jeremy K.; Jaeger, Jessie M.; Ruiz, Angélica; Shonkoff, Seth B. C. (November 15, 2022). "Composition, Emissions, and Air Quality Impacts of Hazardous Air Pollutants in Unburned Natural Gas from Residential Stoves in California". Environmental Science & Technology. 56 (22): 15828–15838. Bibcode:2022EnST...5615828L. doi:10.1021/acs.est.2c02581. ISSN 0013-936X. PMC 9671046. PMID 36263944.
  48. ^ "Volatile Organic Compounds' Impact on Indoor Air Quality". United States Environmental Protection Agency. August 18, 2014. Retrieved May 23, 2024.
  49. ^ "About VOCs". January 21, 2013. Archived from the original on January 21, 2013. Retrieved September 16, 2019.
  50. ^ Oanh, Nguyen Thi Kim; Hung, Yung-Tse (2005). "Indoor Air Pollution Control". Advanced Air and Noise Pollution Control. Handbook of Environmental Engineering. Vol. 2. pp. 237–272. doi:10.1007/978-1-59259-779-6_7. ISBN 978-1-58829-359-6.
  51. ^ "Emicode". Eurofins.com. Archived from the original on September 24, 2015. Retrieved March 2, 2012.
  52. ^ "M1". Eurofins.com. Archived from the original on September 24, 2015. Retrieved March 2, 2012.
  53. ^ "Blue Angel". Eurofins.com. Archived from the original on September 24, 2015. Retrieved March 2, 2012.
  54. ^ "Indoor Air Comfort". Indoor Air Comfort. Archived from the original on February 1, 2011. Retrieved March 2, 2012.
  55. ^ "CDPH Section 01350". Eurofins.com. Archived from the original on September 24, 2015. Retrieved March 2, 2012.
  56. ^ a b "Smelly Moldy Houses". Archived from the original on December 15, 2021. Retrieved August 2, 2014.
  57. ^ Meruva, N. K.; Penn, J. M.; Farthing, D. E. (November 2004). "Rapid identification of microbial VOCs from tobacco molds using closed-loop stripping and gas chromatography/time-of-flight mass spectrometry". J Ind Microbiol Biotechnol. 31 (10): 482–8. doi:10.1007/s10295-004-0175-0. PMID 15517467. S2CID 32543591.
  58. ^ "Atmospheric carbon dioxide passes 400 ppm everywhere". Physics Today (6): 8170. 2016. Bibcode:2016PhT..2016f8170.. doi:10.1063/pt.5.029904.
  59. ^ Xie Y, Li Y, Feng Y, Cheng W, Wang Y (April 2022). "Inhalable microplastics prevails in air: Exploring the size detection limit". Environ Int. 162: 107151. Bibcode:2022EnInt.16207151X. doi:10.1016/j.envint.2022.107151. PMID 35228011.
  60. ^ Liu C, Li J, Zhang Y, Wang L, Deng J, Gao Y, Yu L, Zhang J, Sun H (July 2019). "Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure". Environ Int. 128: 116–124. Bibcode:2019EnInt.128..116L. doi:10.1016/j.envint.2019.04.024. PMID 31039519.
  61. ^ Yuk, Hyeonseong; Jo, Ho Hyeon; Nam, Jihee; Kim, Young Uk; Kim, Sumin (2022). "Microplastic: A particulate matter(PM) generated by deterioration of building materials". Journal of Hazardous Materials. 437. Elsevier BV: 129290. Bibcode:2022JHzM..43729290Y. doi:10.1016/j.jhazmat.2022.129290. ISSN 0304-3894. PMID 35753297.
  62. ^ Eberhard, Tiffany; Casillas, Gaston; Zarus, Gregory M.; Barr, Dana Boyd (January 6, 2024). "Systematic review of microplastics and nanoplastics in indoor and outdoor air: identifying a framework and data needs for quantifying human inhalation exposures" (PDF). Journal of Exposure Science & Environmental Epidemiology. 34 (2). Springer Science and Business Media LLC: 185–196. doi:10.1038/s41370-023-00634-x. ISSN 1559-0631. Retrieved December 19, 2024. MPs have been found in water and soil, and recent research is exposing the vast amount of them in ambient and indoor air.
  63. ^ Gasperi, Johnny; Wright, Stephanie L.; Dris, Rachid; Collard, France; Mandin, Corinne; Guerrouache, Mohamed; Langlois, Valérie; Kelly, Frank J.; Tassin, Bruno (2018). "Microplastics in air: Are we breathing it in?" (PDF). Current Opinion in Environmental Science & Health. 1: 1–5. Bibcode:2018COESH...1....1G. doi:10.1016/j.coesh.2017.10.002. S2CID 133750509. Archived (PDF) from the original on March 6, 2020. Retrieved July 11, 2019.
  64. ^ Prasittisopin, Lapyote; Ferdous, Wahid; Kamchoom, Viroon (2023). "Microplastics in construction and built environment". Developments in the Built Environment. 15. Elsevier BV. doi:10.1016/j.dibe.2023.100188. ISSN 2666-1659.
  65. ^ Galloway, Nanette LoBiondo (September 13, 2024). "Ventnor introduces ordinance to control microplastics contamination". DownBeach. Retrieved October 2, 2024.
  66. ^ Weschler, Charles J. (December 2000). "Ozone in Indoor Environments: Concentration and Chemistry: Ozone in Indoor Environments". Indoor Air. 10 (4): 269–288. doi:10.1034/j.1600-0668.2000.010004269.x. PMID 11089331. Archived from the original on April 15, 2024. Retrieved April 11, 2024.
  67. ^ Weschler, Charles J.; Nazaroff, William W (February 22, 2023). "Human skin oil: a major ozone reactant indoors". Environmental Science: Atmospheres. 3 (4): 640–661. doi:10.1039/D3EA00008G. ISSN 2634-3606. Archived from the original on April 15, 2024. Retrieved April 11, 2024.
  68. ^ Kumar, Prashant; Kalaiarasan, Gopinath; Porter, Alexandra E.; Pinna, Alessandra; KÅ‚osowski, MichaÅ‚ M.; Demokritou, Philip; Chung, Kian Fan; Pain, Christopher; Arvind, D. K.; Arcucci, Rossella; Adcock, Ian M.; Dilliway, Claire (February 20, 2021). "An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments". Science of the Total Environment. 756: 143553. Bibcode:2021ScTEn.75643553K. doi:10.1016/j.scitotenv.2020.143553. hdl:10044/1/84518. PMID 33239200. S2CID 227176222.
  69. ^ Apte, M. G.; Buchanan, I. S. H.; Mendell, M. J. (April 2008). "Outdoor ozone and building-related symptoms in the BASE study". Indoor Air. 18 (2): 156–170. Bibcode:2008InAir..18..156A. doi:10.1111/j.1600-0668.2008.00521.x. PMID 18333994.
  70. ^ "Eight-hour Average Ozone Concentrations | Ground-level Ozone | New England | US EPA". United States Environmental Protection Agency. Archived from the original on December 15, 2021. Retrieved September 16, 2019.
  71. ^ a b c Park, J. H.; Cox-Ganser, J. M. (2011). "Meta-Mold exposure and respiratory health in damp indoor environments". Frontiers in Bioscience. 3 (2): 757–771. doi:10.2741/e284. PMID 21196349.
  72. ^ "CDC – Mold – General Information – Facts About Mold and Dampness". December 4, 2018. Archived from the original on December 16, 2019. Retrieved June 23, 2017.
  73. ^ Singh, Dr Jagjit; Singh, Jagjit, eds. (1994). Building Mycology (1 ed.). Taylor & Francis. doi:10.4324/9780203974735. ISBN 978-1-135-82462-4.
  74. ^ a b Clarke, J.A; Johnstone, C.M; Kelly, N.J; McLean, R.C; anderson, J.A; Rowan, N.J; Smith, J.E (January 20, 1999). "A technique for the prediction of the conditions leading to mould growth in buildings". Building and Environment. 34 (4): 515–521. Bibcode:1999BuEnv..34..515C. doi:10.1016/S0360-1323(98)00023-7. Archived from the original on October 26, 2022. Retrieved April 10, 2024.
  75. ^ Vereecken, Evy; Roels, Staf (November 15, 2011). "Review of mould prediction models and their influence on mould risk evaluation". Building and Environment. 51: 296–310. doi:10.1016/j.buildenv.2011.11.003. Archived from the original on March 2, 2024. Retrieved April 11, 2024.
  76. ^ BS 5250:2021 - Management of moisture in buildings. Code of practice. British Standards Institution (BSI). October 31, 2021. ISBN 978-0-539-18975-9.
  77. ^ Madgwick, Della; Wood, Hannah (August 8, 2016). "The problem of clothes drying in new homes in the UK". Structural Survey. 34 (4/5): 320–330. doi:10.1108/SS-10-2015-0048. ISSN 0263-080X. Archived from the original on May 7, 2021. Retrieved April 11, 2024.
  78. ^ May, Neil; McGilligan, Charles; Ucci, Marcella (2017). "Health and Moisture in Buildings" (PDF). UK Centre for Moisture in Buildings. Archived (PDF) from the original on April 11, 2024. Retrieved April 11, 2024.
  79. ^ "Understanding and addressing the health risks of damp and mould in the home". GOV.UK. September 7, 2023. Archived from the original on April 10, 2024. Retrieved April 11, 2024.
  80. ^ Clark, Sierra N.; Lam, Holly C. Y.; Goode, Emma-Jane; Marczylo, Emma L.; Exley, Karen S.; Dimitroulopoulou, Sani (August 2, 2023). "The Burden of Respiratory Disease from Formaldehyde, Damp and Mould in English Housing". Environments. 10 (8): 136. doi:10.3390/environments10080136. ISSN 2076-3298.
  81. ^ Microbiology of the Indoor Environment Archived July 23, 2011, at the Wayback Machine, microbe.net
  82. ^ http://www.info.gov.hk/info/sars/pdf/amoy_e.pdf
  83. ^ https://www.info.gov.hk/info/sars/graphics/amoyannex.jpg
  84. ^ "Progress in Global Surveillance and Response Capacity 10 Years after Severe Acute Respiratory Syndrome". environmental contamination with SARS CoV RNA was identified on the carpet in front of the index case-patient's room and 3 nearby rooms (and on their door frames but not inside the rooms) and in the air intake vents near the centrally located elevators ... secondary infections occurred not in guest rooms but in the common areas of the ninth floor, such as the corridor or elevator hall. These areas could have been contaminated through body fluids (e.g., vomitus, expectorated sputum), respiratory droplets, or suspended small-particle aerosols generated by the index case-patient; other guests were then infected by fomites or aerosols while passing through these same areas. Efficient spread of SARS CoV through small-particle aerosols was observed in several superspreading events in health care settings, during an airplane flight, and in an apartment complex (12–14,16–19). This process of environmental contamination that generated infectious aerosols likely best explains the pattern of disease transmission at the Hotel Metropole.
  85. ^ Azuma, Kenichi; Kagi, Naoki; Yanagi, U.; Osawa, Haruki (December 2018). "Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance". Environment International. 121 (Pt 1): 51–56. Bibcode:2018EnInt.121...51A. doi:10.1016/j.envint.2018.08.059. PMID 30172928.
  86. ^ Du, Bowen; Tandoc, Michael (June 19, 2020). "Indoor CO2 concentrations and cognitive function: A critical review". International Journal of Indoor Environment and Health. 30 (6): 1067–1082. Bibcode:2020InAir..30.1067D. doi:10.1111/ina.12706. PMID 32557862. S2CID 219915861.
  87. ^ Fan, Yuejie; Cao, Xiaodong; Zhang, Jie; Lai, Dayi; Pang, Liping (June 1, 2023). "Short-term exposure to indoor carbon dioxide and cognitive task performance: A systematic review and meta-analysis". Building and Environment. 237: 110331. Bibcode:2023BuEnv.23710331F. doi:10.1016/j.buildenv.2023.110331.
  88. ^ a b Lowther, Scott D.; Dimitroulopoulou, Sani; Foxall, Kerry; Shrubsole, Clive; Cheek, Emily; Gadeberg, Britta; Sepai, Ovnair (November 16, 2021). "Low Level Carbon Dioxide Indoors—A Pollution Indicator or a Pollutant? A Health-Based Perspective". Environments. 8 (11): 125. doi:10.3390/environments8110125. ISSN 2076-3298.
  89. ^ Persily, Andrew (July 2022). "Development and application of an indoor carbon dioxide metric". Indoor Air. 32 (7): e13059. doi:10.1111/ina.13059. PMID 35904382.
  90. ^ "Indoor Environmental Quality: HVAC Management | NIOSH | CDC". www.cdc.gov. February 25, 2022. Archived from the original on April 1, 2022. Retrieved April 1, 2022.
  91. ^ Indoor Environmental Quality: Building Ventilation Archived January 20, 2022, at the Wayback Machine. National Institute for Occupational Safety and Health. Accessed October 8, 2008.
  92. ^ "SAMHE - Schools' Air quality Monitoring for Health and Education". samhe.org.uk. Archived from the original on March 18, 2024. Retrieved March 18, 2024.
  93. ^ "Document Display | NEPIS | US EPA". nepis.epa.gov. Archived from the original on November 16, 2023. Retrieved October 19, 2023.
  94. ^ Zeeb & Shannoun 2009, p. 3.
  95. ^ C.Michael Hogan and Sjaak Slanina. 2010, Air pollution. Encyclopedia of Earth Archived October 12, 2006, at the Wayback Machine. eds. Sidney Draggan and Cutler Cleveland. National Council for Science and the Environment. Washington DC
  96. ^ "Radon Mitigation Methods". Radon Solution—Raising Radon Awareness. Archived from the original on December 15, 2008. Retrieved December 2, 2008.
  97. ^ Zeeb & Shannoun 2009, p. [page needed].
  98. ^ "Basic radon facts" (PDF). US Environmental Protection Agency. Archived (PDF) from the original on January 13, 2022. Retrieved September 18, 2018. Public Domain This article incorporates text from this source, which is in the public domain.
  99. ^ "Radon Action Level and Target Level". UKradon. Archived from the original on March 18, 2024. Retrieved March 18, 2024.
  100. ^ "Radon Zone Map (with State Information)". U.S. Environmental Protection Agency. Archived from the original on April 1, 2023. Retrieved April 10, 2024.
  101. ^ "UK maps of radon". UKradon. Archived from the original on March 7, 2024. Retrieved April 10, 2024.
  102. ^ "Radon map of Australia". Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Archived from the original on March 20, 2024. Retrieved April 10, 2024.
  103. ^ "Climate Change 2021: The Physical Science Basis". Intergovernmental Panel on Climate Change. Archived (PDF) from the original on May 26, 2023. Retrieved April 15, 2024.
  104. ^ Chen, Guochao; Qiu, Minghao; Wang, Peng; Zhang, Yuqiang; Shindell, Drew; Zhang, Hongliang (July 19, 2024). "Continuous wildfires threaten public and ecosystem health under climate change across continents". Frontiers of Environmental Science & Engineering. 18 (10). doi:10.1007/s11783-024-1890-6. ISSN 2095-2201.
  105. ^ Gherasim, Alina; Lee, Alison G.; Bernstein, Jonathan A. (November 14, 2023). "Impact of Climate Change on Indoor Air Quality". Immunology and Allergy Clinics of North America. 44 (1): 55–73. doi:10.1016/j.iac.2023.09.001. PMID 37973260. Archived from the original on November 15, 2023. Retrieved April 15, 2024.
  106. ^ Lacressonnière, Gwendoline; Watson, Laura; Gauss, Michael; Engardt, Magnuz; Andersson, Camilla; Beekmann, Matthias; Colette, Augustin; Foret, Gilles; Josse, Béatrice; Marécal, Virginie; Nyiri, Agnes; Siour, Guillaume; Sobolowski, Stefan; Vautard, Robert (February 1, 2017). "Particulate matter air pollution in Europe in a +2 °C warming world". Atmospheric Environment. 154: 129–140. Bibcode:2017AtmEn.154..129L. doi:10.1016/j.atmosenv.2017.01.037. Archived from the original on November 17, 2023. Retrieved April 15, 2024.
  107. ^ Lee, J; Lewis, A; Monks, P; Jacob, M; Hamilton, J; Hopkins, J; Watson, N; Saxton, J; Ennis, C; Carpenter, L (September 26, 2006). "Ozone photochemistry and elevated isoprene during the UK heatwave of august 2003". Atmospheric Environment. 40 (39): 7598–7613. Bibcode:2006AtmEn..40.7598L. doi:10.1016/j.atmosenv.2006.06.057. Archived from the original on October 26, 2022. Retrieved April 15, 2024.
  108. ^ Salthammer, Tunga; Schieweck, Alexandra; Gu, Jianwei; Ameri, Shaghayegh; Uhde, Erik (August 7, 2018). "Future trends in ambient air pollution and climate in Germany – Implications for the indoor environment". Building and Environment. 143: 661–670. Bibcode:2018BuEnv.143..661S. doi:10.1016/j.buildenv.2018.07.050.
  109. ^ Zhong, L.; Lee, C.-S.; Haghighat, F. (December 1, 2016). "Indoor ozone and climate change". Sustainable Cities and Society. 28: 466–472. doi:10.1016/j.scs.2016.08.020. Archived from the original on November 28, 2022. Retrieved April 15, 2024.
  110. ^ Zhao, Jiangyue; Uhde, Erik; Salthammer, Tunga; Antretter, Florian; Shaw, David; Carslaw, Nicola; Schieweck, Alexandra (December 9, 2023). "Long-term prediction of the effects of climate change on indoor climate and air quality". Environmental Research. 243: 117804. doi:10.1016/j.envres.2023.117804. PMID 38042519.
  111. ^ Niculita-Hirzel, Hélène (March 16, 2022). "Latest Trends in Pollutant Accumulations at Threatening Levels in Energy-Efficient Residential Buildings with and without Mechanical Ventilation: A Review". International Journal of Environmental Research and Public Health. 19 (6): 3538. doi:10.3390/ijerph19063538. ISSN 1660-4601. PMC 8951331. PMID 35329223.
  112. ^ UK Health Security Agency (2024) [1 September 2012]. "Chapter 5: Impact of climate change policies on indoor environmental quality and health in UK housing". Health Effects of Climate Change (HECC) in the UK: 2023 report (published January 15, 2024).
  113. ^ World Health Organization, ed. (2010). Who guidelines for indoor air quality: selected pollutants. Copenhagen: WHO. ISBN 978-92-890-0213-4. OCLC 696099951.
  114. ^ "Air quality: UK guidelines for volatile organic compounds in indoor spaces". Public Health England. September 13, 2019. Retrieved April 17, 2024.
  115. ^ "Home - IEQ Guidelines". ieqguidelines.org. Retrieved April 17, 2024.
  116. ^ Toyinbo, Oluyemi; Hägerhed, Linda; Dimitroulopoulou, Sani; Dudzinska, Marzenna; Emmerich, Steven; Hemming, David; Park, Ju-Hyeong; Haverinen-Shaughnessy, Ulla; the Scientific Technical Committee 34 of the International Society of Indoor Air Quality, Climate (April 19, 2022). "Open database for international and national indoor environmental quality guidelines". Indoor Air. 32 (4): e13028. doi:10.1111/ina.13028. ISSN 0905-6947. PMC 11099937. PMID 35481936.cite journal: CS1 maint: numeric names: authors list (link)
  117. ^ Dimitroulopoulou, Sani; DudziÅ„ska, Marzenna R.; Gunnarsen, Lars; Hägerhed, Linda; Maula, Henna; Singh, Raja; Toyinbo, Oluyemi; Haverinen-Shaughnessy, Ulla (August 4, 2023). "Indoor air quality guidelines from across the world: An appraisal considering energy saving, health, productivity, and comfort". Environment International. 178: 108127. Bibcode:2023EnInt.17808127D. doi:10.1016/j.envint.2023.108127. PMID 37544267.
  118. ^ Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque (February 2017). "Monitoring Indoor Air Quality for Enhanced Occupational Health". Journal of Medical Systems. 41 (2): 23. doi:10.1007/s10916-016-0667-2. PMID 28000117. S2CID 7372403.
  119. ^ Wyon, D. P. (August 2004). "The effects of indoor air quality on performance and productivity: The effects of IAQ on performance and productivity". Indoor Air. 14: 92–101. doi:10.1111/j.1600-0668.2004.00278.x. PMID 15330777.
  120. ^ Son, Young Joo; Pope, Zachary C.; Pantelic, Jovan (September 2023). "Perceived air quality and satisfaction during implementation of an automated indoor air quality monitoring and control system". Building and Environment. 243: 110713. Bibcode:2023BuEnv.24310713S. doi:10.1016/j.buildenv.2023.110713.
  121. ^ IAQM (2021). Indoor Air Quality Guidance: Assessment, Monitoring, Modelling and Mitigation (PDF) (Version 0.1 ed.). London: Institute of Air Quality Management.
  122. ^ a b Institute for Occupational Safety and Health of the German Social Accident Insurance. "Indoor workplaces – Recommended procedure for the investigation of working environment". Archived from the original on November 3, 2021. Retrieved June 10, 2020.
  123. ^ "Climate Change: Atmospheric Carbon Dioxide | NOAA Climate.gov". www.climate.gov. April 9, 2024. Retrieved May 6, 2024.
  124. ^ "Ventilation to reduce the spread of respiratory infections, including COVID-19". GOV.UK. August 2, 2022. Archived from the original on January 18, 2024. Retrieved April 15, 2024.
  125. ^ Dela Cruz, Majbrit; Christensen, Jan H.; Thomsen, Jane Dyrhauge; Müller, Renate (December 2014). "Can ornamental potted plants remove volatile organic compounds from indoor air? — a review". Environmental Science and Pollution Research. 21 (24): 13909–13928. Bibcode:2014ESPR...2113909D. doi:10.1007/s11356-014-3240-x. PMID 25056742. S2CID 207272189.
  126. ^ Cummings, Bryan E.; Waring, Michael S. (March 2020). "Potted plants do not improve indoor air quality: a review and analysis of reported VOC removal efficiencies". Journal of Exposure Science & Environmental Epidemiology. 30 (2): 253–261. Bibcode:2020JESEE..30..253C. doi:10.1038/s41370-019-0175-9. PMID 31695112. S2CID 207911697.
  127. ^ Wolverton, B. C.; Wolverton, J. D. (1996). "Interior plants: their influence on airborne microbes inside energy-efficient buildings". Journal of the Mississippi Academy of Sciences. 41 (2): 100–105.
  128. ^ US EPA, OAR (July 16, 2013). "Mold". US EPA. Archived from the original on May 18, 2020. Retrieved September 16, 2019.
  129. ^ Institute of Medicine (US) Committee on Damp Indoor Spaces and Health (2004). Damp Indoor Spaces and Health. National Academies Press. ISBN 978-0-309-09193-0. PMID 25009878. Archived from the original on January 19, 2023. Retrieved March 30, 2024.[page needed]
  130. ^ "Indoor Environmental Quality". Washington, DC: US National Institute for Occupational Safety and Health. Archived from the original on December 3, 2013. Retrieved May 17, 2013.
  131. ^ Lewis, Alastair C; Allan, James; Carslaw, David; Carruthers, David; Fuller, Gary; Harrison, Roy; Heal, Mathew; Nemitz, Eiko; Reeves, Claire (2022). Indoor Air Quality (PDF) (Report). Air Quality Expert Group. doi:10.5281/zenodo.6523605. Archived (PDF) from the original on June 5, 2023. Retrieved April 15, 2024.
  132. ^ "Isiaq.Org". International Society of Indoor Air Quality and Climate. Archived from the original on January 21, 2022. Retrieved March 2, 2012.

Sources

[edit]
Monographs
Articles, radio segments, web pages

Further reading

[edit]
[edit]

 

Rooftop HVAC unit with view of fresh-air intake vent
Ventilation duct with outlet diffuser vent. These are installed throughout a building to move air in or out of rooms. In the middle is a damper to open and close the vent to allow more or less air to enter the space.
The control circuit in a household HVAC installation. The wires connecting to the blue terminal block on the upper-right of the board lead to the thermostat. The fan enclosure is directly behind the board, and the filters can be seen at the top. The safety interlock switch is at the bottom left. In the lower middle is the capacitor.

Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR (as in the designation of HACR-rated circuit breakers).

HVAC is an important part of residential structures such as single family homes, apartment buildings, hotels, and senior living facilities; medium to large industrial and office buildings such as skyscrapers and hospitals; vehicles such as cars, trains, airplanes, ships and submarines; and in marine environments, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors.

Ventilating or ventilation (the "V" in HVAC) is the process of exchanging or replacing air in any space to provide high indoor air quality which involves temperature control, oxygen replenishment, and removal of moisture, odors, smoke, heat, dust, airborne bacteria, carbon dioxide, and other gases. Ventilation removes unpleasant smells and excessive moisture, introduces outside air, keeps interior building air circulating, and prevents stagnation of the interior air. Methods for ventilating a building are divided into mechanical/forced and natural types.[1]

Overview

[edit]

The three major functions of heating, ventilation, and air conditioning are interrelated, especially with the need to provide thermal comfort and acceptable indoor air quality within reasonable installation, operation, and maintenance costs. HVAC systems can be used in both domestic and commercial environments. HVAC systems can provide ventilation, and maintain pressure relationships between spaces. The means of air delivery and removal from spaces is known as room air distribution.[2]

Individual systems

[edit]

In modern buildings, the design, installation, and control systems of these functions are integrated into one or more HVAC systems. For very small buildings, contractors normally estimate the capacity and type of system needed and then design the system, selecting the appropriate refrigerant and various components needed. For larger buildings, building service designers, mechanical engineers, or building services engineers analyze, design, and specify the HVAC systems. Specialty mechanical contractors and suppliers then fabricate, install and commission the systems. Building permits and code-compliance inspections of the installations are normally required for all sizes of buildings

District networks

[edit]

Although HVAC is executed in individual buildings or other enclosed spaces (like NORAD's underground headquarters), the equipment involved is in some cases an extension of a larger district heating (DH) or district cooling (DC) network, or a combined DHC network. In such cases, the operating and maintenance aspects are simplified and metering becomes necessary to bill for the energy that is consumed, and in some cases energy that is returned to the larger system. For example, at a given time one building may be utilizing chilled water for air conditioning and the warm water it returns may be used in another building for heating, or for the overall heating-portion of the DHC network (likely with energy added to boost the temperature).[3][4][5]

Basing HVAC on a larger network helps provide an economy of scale that is often not possible for individual buildings, for utilizing renewable energy sources such as solar heat,[6][7][8] winter's cold,[9][10] the cooling potential in some places of lakes or seawater for free cooling, and the enabling function of seasonal thermal energy storage. By utilizing natural sources that can be used for HVAC systems it can make a huge difference for the environment and help expand the knowledge of using different methods.

History

[edit]

HVAC is based on inventions and discoveries made by Nikolay Lvov, Michael Faraday, Rolla C. Carpenter, Willis Carrier, Edwin Ruud, Reuben Trane, James Joule, William Rankine, Sadi Carnot, Alice Parker and many others.[11]

Multiple inventions within this time frame preceded the beginnings of the first comfort air conditioning system, which was designed in 1902 by Alfred Wolff (Cooper, 2003) for the New York Stock Exchange, while Willis Carrier equipped the Sacketts-Wilhems Printing Company with the process AC unit the same year. Coyne College was the first school to offer HVAC training in 1899.[12] The first residential AC was installed by 1914, and by the 1950s there was "widespread adoption of residential AC".[13]

The invention of the components of HVAC systems went hand-in-hand with the Industrial Revolution, and new methods of modernization, higher efficiency, and system control are constantly being introduced by companies and inventors worldwide.

Heating

[edit]

Heaters are appliances whose purpose is to generate heat (i.e. warmth) for the building. This can be done via central heating. Such a system contains a boiler, furnace, or heat pump to heat water, steam, or air in a central location such as a furnace room in a home, or a mechanical room in a large building. The heat can be transferred by convection, conduction, or radiation. Space heaters are used to heat single rooms and only consist of a single unit.

Generation

[edit]
Central heating unit

Heaters exist for various types of fuel, including solid fuels, liquids, and gases. Another type of heat source is electricity, normally heating ribbons composed of high resistance wire (see Nichrome). This principle is also used for baseboard heaters and portable heaters. Electrical heaters are often used as backup or supplemental heat for heat pump systems.

The heat pump gained popularity in the 1950s in Japan and the United States.[14] Heat pumps can extract heat from various sources, such as environmental air, exhaust air from a building, or from the ground. Heat pumps transfer heat from outside the structure into the air inside. Initially, heat pump HVAC systems were only used in moderate climates, but with improvements in low temperature operation and reduced loads due to more efficient homes, they are increasing in popularity in cooler climates. They can also operate in reverse to cool an interior.

Distribution

[edit]

Water/steam

[edit]

In the case of heated water or steam, piping is used to transport the heat to the rooms. Most modern hot water boiler heating systems have a circulator, which is a pump, to move hot water through the distribution system (as opposed to older gravity-fed systems). The heat can be transferred to the surrounding air using radiators, hot water coils (hydro-air), or other heat exchangers. The radiators may be mounted on walls or installed within the floor to produce floor heat.

The use of water as the heat transfer medium is known as hydronics. The heated water can also supply an auxiliary heat exchanger to supply hot water for bathing and washing.

Air

[edit]

Warm air systems distribute the heated air through ductwork systems of supply and return air through metal or fiberglass ducts. Many systems use the same ducts to distribute air cooled by an evaporator coil for air conditioning. The air supply is normally filtered through air filters[dubiousdiscuss] to remove dust and pollen particles.[15]

Dangers

[edit]

The use of furnaces, space heaters, and boilers as a method of indoor heating could result in incomplete combustion and the emission of carbon monoxide, nitrogen oxides, formaldehyde, volatile organic compounds, and other combustion byproducts. Incomplete combustion occurs when there is insufficient oxygen; the inputs are fuels containing various contaminants and the outputs are harmful byproducts, most dangerously carbon monoxide, which is a tasteless and odorless gas with serious adverse health effects.[16]

Without proper ventilation, carbon monoxide can be lethal at concentrations of 1000 ppm (0.1%). However, at several hundred ppm, carbon monoxide exposure induces headaches, fatigue, nausea, and vomiting. Carbon monoxide binds with hemoglobin in the blood, forming carboxyhemoglobin, reducing the blood's ability to transport oxygen. The primary health concerns associated with carbon monoxide exposure are its cardiovascular and neurobehavioral effects. Carbon monoxide can cause atherosclerosis (the hardening of arteries) and can also trigger heart attacks. Neurologically, carbon monoxide exposure reduces hand to eye coordination, vigilance, and continuous performance. It can also affect time discrimination.[17]

Ventilation

[edit]

Ventilation is the process of changing or replacing air in any space to control the temperature or remove any combination of moisture, odors, smoke, heat, dust, airborne bacteria, or carbon dioxide, and to replenish oxygen. It plays a critical role in maintaining a healthy indoor environment by preventing the buildup of harmful pollutants and ensuring the circulation of fresh air. Different methods, such as natural ventilation through windows and mechanical ventilation systems, can be used depending on the building design and air quality needs. Ventilation often refers to the intentional delivery of the outside air to the building indoor space. It is one of the most important factors for maintaining acceptable indoor air quality in buildings.

Although ventilation is an integral component of maintaining good indoor air quality, it may not be satisfactory alone.[18] A clear understanding of both indoor and outdoor air quality parameters is needed to improve the performance of ventilation in terms of ...[19] In scenarios where outdoor pollution would deteriorate indoor air quality, other treatment devices such as filtration may also be necessary.[20]

Methods for ventilating a building may be divided into mechanical/forced and natural types.[21]

Mechanical or forced

[edit]
HVAC ventilation exhaust for a 12-story building
An axial belt-drive exhaust fan serving an underground car park. This exhaust fan's operation is interlocked with the concentration of contaminants emitted by internal combustion engines.

Mechanical, or forced, ventilation is provided by an air handler (AHU) and used to control indoor air quality. Excess humidity, odors, and contaminants can often be controlled via dilution or replacement with outside air. However, in humid climates more energy is required to remove excess moisture from ventilation air.

Kitchens and bathrooms typically have mechanical exhausts to control odors and sometimes humidity. Factors in the design of such systems include the flow rate (which is a function of the fan speed and exhaust vent size) and noise level. Direct drive fans are available for many applications and can reduce maintenance needs.

In summer, ceiling fans and table/floor fans circulate air within a room for the purpose of reducing the perceived temperature by increasing evaporation of perspiration on the skin of the occupants. Because hot air rises, ceiling fans may be used to keep a room warmer in the winter by circulating the warm stratified air from the ceiling to the floor.

Passive

[edit]
Ventilation on the downdraught system, by impulsion, or the 'plenum' principle, applied to schoolrooms (1899)

Natural ventilation is the ventilation of a building with outside air without using fans or other mechanical systems. It can be via operable windows, louvers, or trickle vents when spaces are small and the architecture permits. ASHRAE defined Natural ventilation as the flow of air through open windows, doors, grilles, and other planned building envelope penetrations, and as being driven by natural and/or artificially produced pressure differentials.[1]

Natural ventilation strategies also include cross ventilation, which relies on wind pressure differences on opposite sides of a building. By strategically placing openings, such as windows or vents, on opposing walls, air is channeled through the space to enhance cooling and ventilation. Cross ventilation is most effective when there are clear, unobstructed paths for airflow within the building.

In more complex schemes, warm air is allowed to rise and flow out high building openings to the outside (stack effect), causing cool outside air to be drawn into low building openings. Natural ventilation schemes can use very little energy, but care must be taken to ensure comfort. In warm or humid climates, maintaining thermal comfort solely via natural ventilation might not be possible. Air conditioning systems are used, either as backups or supplements. Air-side economizers also use outside air to condition spaces, but do so using fans, ducts, dampers, and control systems to introduce and distribute cool outdoor air when appropriate.

An important component of natural ventilation is air change rate or air changes per hour: the hourly rate of ventilation divided by the volume of the space. For example, six air changes per hour means an amount of new air, equal to the volume of the space, is added every ten minutes. For human comfort, a minimum of four air changes per hour is typical, though warehouses might have only two. Too high of an air change rate may be uncomfortable, akin to a wind tunnel which has thousands of changes per hour. The highest air change rates are for crowded spaces, bars, night clubs, commercial kitchens at around 30 to 50 air changes per hour.[22]

Room pressure can be either positive or negative with respect to outside the room. Positive pressure occurs when there is more air being supplied than exhausted, and is common to reduce the infiltration of outside contaminants.[23]

Airborne diseases

[edit]

Natural ventilation [24] is a key factor in reducing the spread of airborne illnesses such as tuberculosis, the common cold, influenza, meningitis or COVID-19. Opening doors and windows are good ways to maximize natural ventilation, which would make the risk of airborne contagion much lower than with costly and maintenance-requiring mechanical systems. Old-fashioned clinical areas with high ceilings and large windows provide the greatest protection. Natural ventilation costs little and is maintenance free, and is particularly suited to limited-resource settings and tropical climates, where the burden of TB and institutional TB transmission is highest. In settings where respiratory isolation is difficult and climate permits, windows and doors should be opened to reduce the risk of airborne contagion. Natural ventilation requires little maintenance and is inexpensive.[25]

Natural ventilation is not practical in much of the infrastructure because of climate. This means that the facilities need to have effective mechanical ventilation systems and or use Ceiling Level UV or FAR UV ventilation systems.

Alpha Black Edition - Sirair Air conditioner with UVC (Ultraviolet Germicidal Irradiation)

Ventilation is measured in terms of Air Changes Per Hour (ACH). As of 2023, the CDC recommends that all spaces have a minimum of 5 ACH.[26] For hospital rooms with airborne contagions the CDC recommends a minimum of 12 ACH.[27] The challenges in facility ventilation are public unawareness,[28][29] ineffective government oversight, poor building codes that are based on comfort levels, poor system operations, poor maintenance, and lack of transparency.[30]

UVC or Ultraviolet Germicidal Irradiation is a function used in modern air conditioners which reduces airborne viruses, bacteria, and fungi, through the use of a built-in LED UV light that emits a gentle glow across the evaporator. As the cross-flow fan circulates the room air, any viruses are guided through the sterilization module’s irradiation range, rendering them instantly inactive.[31]

Air conditioning

[edit]

An air conditioning system, or a standalone air conditioner, provides cooling and/or humidity control for all or part of a building. Air conditioned buildings often have sealed windows, because open windows would work against the system intended to maintain constant indoor air conditions. Outside, fresh air is generally drawn into the system by a vent into a mix air chamber for mixing with the space return air. Then the mixture air enters an indoor or outdoor heat exchanger section where the air is to be cooled down, then be guided to the space creating positive air pressure. The percentage of return air made up of fresh air can usually be manipulated by adjusting the opening of this vent. Typical fresh air intake is about 10% of the total supply air.[citation needed]

Air conditioning and refrigeration are provided through the removal of heat. Heat can be removed through radiation, convection, or conduction. The heat transfer medium is a refrigeration system, such as water, air, ice, and chemicals are referred to as refrigerants. A refrigerant is employed either in a heat pump system in which a compressor is used to drive thermodynamic refrigeration cycle, or in a free cooling system that uses pumps to circulate a cool refrigerant (typically water or a glycol mix).

It is imperative that the air conditioning horsepower is sufficient for the area being cooled. Underpowered air conditioning systems will lead to power wastage and inefficient usage. Adequate horsepower is required for any air conditioner installed.

Refrigeration cycle

[edit]
A simple stylized diagram of the refrigeration cycle: 1) condensing coil, 2) expansion valve, 3) evaporating coil, 4) compressor

The refrigeration cycle uses four essential elements to cool, which are compressor, condenser, metering device, and evaporator.

  • At the inlet of a compressor, the refrigerant inside the system is in a low pressure, low temperature, gaseous state. The compressor pumps the refrigerant gas up to high pressure and temperature.
  • From there it enters a heat exchanger (sometimes called a condensing coil or condenser) where it loses heat to the outside, cools, and condenses into its liquid phase.
  • An expansion valve (also called metering device) regulates the refrigerant liquid to flow at the proper rate.
  • The liquid refrigerant is returned to another heat exchanger where it is allowed to evaporate, hence the heat exchanger is often called an evaporating coil or evaporator. As the liquid refrigerant evaporates it absorbs heat from the inside air, returns to the compressor, and repeats the cycle. In the process, heat is absorbed from indoors and transferred outdoors, resulting in cooling of the building.

In variable climates, the system may include a reversing valve that switches from heating in winter to cooling in summer. By reversing the flow of refrigerant, the heat pump refrigeration cycle is changed from cooling to heating or vice versa. This allows a facility to be heated and cooled by a single piece of equipment by the same means, and with the same hardware.

Free cooling

[edit]

Free cooling systems can have very high efficiencies, and are sometimes combined with seasonal thermal energy storage so that the cold of winter can be used for summer air conditioning. Common storage mediums are deep aquifers or a natural underground rock mass accessed via a cluster of small-diameter, heat-exchanger-equipped boreholes. Some systems with small storages are hybrids, using free cooling early in the cooling season, and later employing a heat pump to chill the circulation coming from the storage. The heat pump is added-in because the storage acts as a heat sink when the system is in cooling (as opposed to charging) mode, causing the temperature to gradually increase during the cooling season.

Some systems include an "economizer mode", which is sometimes called a "free-cooling mode". When economizing, the control system will open (fully or partially) the outside air damper and close (fully or partially) the return air damper. This will cause fresh, outside air to be supplied to the system. When the outside air is cooler than the demanded cool air, this will allow the demand to be met without using the mechanical supply of cooling (typically chilled water or a direct expansion "DX" unit), thus saving energy. The control system can compare the temperature of the outside air vs. return air, or it can compare the enthalpy of the air, as is frequently done in climates where humidity is more of an issue. In both cases, the outside air must be less energetic than the return air for the system to enter the economizer mode.

Packaged split system

[edit]

Central, "all-air" air-conditioning systems (or package systems) with a combined outdoor condenser/evaporator unit are often installed in North American residences, offices, and public buildings, but are difficult to retrofit (install in a building that was not designed to receive it) because of the bulky air ducts required.[32] (Minisplit ductless systems are used in these situations.) Outside of North America, packaged systems are only used in limited applications involving large indoor space such as stadiums, theatres or exhibition halls.

An alternative to packaged systems is the use of separate indoor and outdoor coils in split systems. Split systems are preferred and widely used worldwide except in North America. In North America, split systems are most often seen in residential applications, but they are gaining popularity in small commercial buildings. Split systems are used where ductwork is not feasible or where the space conditioning efficiency is of prime concern.[33] The benefits of ductless air conditioning systems include easy installation, no ductwork, greater zonal control, flexibility of control, and quiet operation.[34] In space conditioning, the duct losses can account for 30% of energy consumption.[35] The use of minisplits can result in energy savings in space conditioning as there are no losses associated with ducting.

With the split system, the evaporator coil is connected to a remote condenser unit using refrigerant piping between an indoor and outdoor unit instead of ducting air directly from the outdoor unit. Indoor units with directional vents mount onto walls, suspended from ceilings, or fit into the ceiling. Other indoor units mount inside the ceiling cavity so that short lengths of duct handle air from the indoor unit to vents or diffusers around the rooms.

Split systems are more efficient and the footprint is typically smaller than the package systems. On the other hand, package systems tend to have a slightly lower indoor noise level compared to split systems since the fan motor is located outside.

Dehumidification

[edit]

Dehumidification (air drying) in an air conditioning system is provided by the evaporator. Since the evaporator operates at a temperature below the dew point, moisture in the air condenses on the evaporator coil tubes. This moisture is collected at the bottom of the evaporator in a pan and removed by piping to a central drain or onto the ground outside.

A dehumidifier is an air-conditioner-like device that controls the humidity of a room or building. It is often employed in basements that have a higher relative humidity because of their lower temperature (and propensity for damp floors and walls). In food retailing establishments, large open chiller cabinets are highly effective at dehumidifying the internal air. Conversely, a humidifier increases the humidity of a building.

The HVAC components that dehumidify the ventilation air deserve careful attention because outdoor air constitutes most of the annual humidity load for nearly all buildings.[36]

Humidification

[edit]

Maintenance

[edit]

All modern air conditioning systems, even small window package units, are equipped with internal air filters.[citation needed] These are generally of a lightweight gauze-like material, and must be replaced or washed as conditions warrant. For example, a building in a high dust environment, or a home with furry pets, will need to have the filters changed more often than buildings without these dirt loads. Failure to replace these filters as needed will contribute to a lower heat exchange rate, resulting in wasted energy, shortened equipment life, and higher energy bills; low air flow can result in iced-over evaporator coils, which can completely stop airflow. Additionally, very dirty or plugged filters can cause overheating during a heating cycle, which can result in damage to the system or even fire.

Because an air conditioner moves heat between the indoor coil and the outdoor coil, both must be kept clean. This means that, in addition to replacing the air filter at the evaporator coil, it is also necessary to regularly clean the condenser coil. Failure to keep the condenser clean will eventually result in harm to the compressor because the condenser coil is responsible for discharging both the indoor heat (as picked up by the evaporator) and the heat generated by the electric motor driving the compressor.

Energy efficiency

[edit]

HVAC is significantly responsible for promoting energy efficiency of buildings as the building sector consumes the largest percentage of global energy.[37] Since the 1980s, manufacturers of HVAC equipment have been making an effort to make the systems they manufacture more efficient. This was originally driven by rising energy costs, and has more recently been driven by increased awareness of environmental issues. Additionally, improvements to the HVAC system efficiency can also help increase occupant health and productivity.[38] In the US, the EPA has imposed tighter restrictions over the years. There are several methods for making HVAC systems more efficient.

Heating energy

[edit]

In the past, water heating was more efficient for heating buildings and was the standard in the United States. Today, forced air systems can double for air conditioning and are more popular.

Some benefits of forced air systems, which are now widely used in churches, schools, and high-end residences, are

  • Better air conditioning effects
  • Energy savings of up to 15–20%
  • Even conditioning[citation needed]

A drawback is the installation cost, which can be slightly higher than traditional HVAC systems.

Energy efficiency can be improved even more in central heating systems by introducing zoned heating. This allows a more granular application of heat, similar to non-central heating systems. Zones are controlled by multiple thermostats. In water heating systems the thermostats control zone valves, and in forced air systems they control zone dampers inside the vents which selectively block the flow of air. In this case, the control system is very critical to maintaining a proper temperature.

Forecasting is another method of controlling building heating by calculating the demand for heating energy that should be supplied to the building in each time unit.

Ground source heat pump

[edit]

Ground source, or geothermal, heat pumps are similar to ordinary heat pumps, but instead of transferring heat to or from outside air, they rely on the stable, even temperature of the earth to provide heating and air conditioning. Many regions experience seasonal temperature extremes, which would require large-capacity heating and cooling equipment to heat or cool buildings. For example, a conventional heat pump system used to heat a building in Montana's −57 °C (−70 °F) low temperature or cool a building in the highest temperature ever recorded in the US—57 °C (134 °F) in Death Valley, California, in 1913 would require a large amount of energy due to the extreme difference between inside and outside air temperatures. A metre below the earth's surface, however, the ground remains at a relatively constant temperature. Utilizing this large source of relatively moderate temperature earth, a heating or cooling system's capacity can often be significantly reduced. Although ground temperatures vary according to latitude, at 1.8 metres (6 ft) underground, temperatures generally only range from 7 to 24 °C (45 to 75 °F).

Solar air conditioning

[edit]

Photovoltaic solar panels offer a new way to potentially decrease the operating cost of air conditioning. Traditional air conditioners run using alternating current, and hence, any direct-current solar power needs to be inverted to be compatible with these units. New variable-speed DC-motor units allow solar power to more easily run them since this conversion is unnecessary, and since the motors are tolerant of voltage fluctuations associated with variance in supplied solar power (e.g., due to cloud cover).

Ventilation energy recovery

[edit]

Energy recovery systems sometimes utilize heat recovery ventilation or energy recovery ventilation systems that employ heat exchangers or enthalpy wheels to recover sensible or latent heat from exhausted air. This is done by transfer of energy from the stale air inside the home to the incoming fresh air from outside.

Air conditioning energy

[edit]

The performance of vapor compression refrigeration cycles is limited by thermodynamics.[39] These air conditioning and heat pump devices move heat rather than convert it from one form to another, so thermal efficiencies do not appropriately describe the performance of these devices. The Coefficient of performance (COP) measures performance, but this dimensionless measure has not been adopted. Instead, the Energy Efficiency Ratio (EER) has traditionally been used to characterize the performance of many HVAC systems. EER is the Energy Efficiency Ratio based on a 35 °C (95 °F) outdoor temperature. To more accurately describe the performance of air conditioning equipment over a typical cooling season a modified version of the EER, the Seasonal Energy Efficiency Ratio (SEER), or in Europe the ESEER, is used. SEER ratings are based on seasonal temperature averages instead of a constant 35 °C (95 °F) outdoor temperature. The current industry minimum SEER rating is 14 SEER. Engineers have pointed out some areas where efficiency of the existing hardware could be improved. For example, the fan blades used to move the air are usually stamped from sheet metal, an economical method of manufacture, but as a result they are not aerodynamically efficient. A well-designed blade could reduce the electrical power required to move the air by a third.[40]

Demand-controlled kitchen ventilation

[edit]

Demand-controlled kitchen ventilation (DCKV) is a building controls approach to controlling the volume of kitchen exhaust and supply air in response to the actual cooking loads in a commercial kitchen. Traditional commercial kitchen ventilation systems operate at 100% fan speed independent of the volume of cooking activity and DCKV technology changes that to provide significant fan energy and conditioned air savings. By deploying smart sensing technology, both the exhaust and supply fans can be controlled to capitalize on the affinity laws for motor energy savings, reduce makeup air heating and cooling energy, increasing safety, and reducing ambient kitchen noise levels.[41]

Air filtration and cleaning

[edit]
Air handling unit, used for heating, cooling, and filtering the air

Air cleaning and filtration removes particles, contaminants, vapors and gases from the air. The filtered and cleaned air then is used in heating, ventilation, and air conditioning. Air cleaning and filtration should be taken in account when protecting our building environments.[42] If present, contaminants can come out from the HVAC systems if not removed or filtered properly.

Clean air delivery rate (CADR) is the amount of clean air an air cleaner provides to a room or space. When determining CADR, the amount of airflow in a space is taken into account. For example, an air cleaner with a flow rate of 30 cubic metres (1,000 cu ft) per minute and an efficiency of 50% has a CADR of 15 cubic metres (500 cu ft) per minute. Along with CADR, filtration performance is very important when it comes to the air in our indoor environment. This depends on the size of the particle or fiber, the filter packing density and depth, and the airflow rate.[42]

Circulation of harmful substances

[edit]

Poorly maintained air conditioners/ventilation systems can harbor mold, bacteria, and other contaminants, which are then circulated throughout indoor spaces, contributing to ...[43]

Industry and standards

[edit]

The HVAC industry is a worldwide enterprise, with roles including operation and maintenance, system design and construction, equipment manufacturing and sales, and in education and research. The HVAC industry was historically regulated by the manufacturers of HVAC equipment, but regulating and standards organizations such as HARDI (Heating, Air-conditioning and Refrigeration Distributors International), ASHRAE, SMACNA, ACCA (Air Conditioning Contractors of America), Uniform Mechanical Code, International Mechanical Code, and AMCA have been established to support the industry and encourage high standards and achievement. (UL as an omnibus agency is not specific to the HVAC industry.)

The starting point in carrying out an estimate both for cooling and heating depends on the exterior climate and interior specified conditions. However, before taking up the heat load calculation, it is necessary to find fresh air requirements for each area in detail, as pressurization is an important consideration.

International

[edit]

ISO 16813:2006 is one of the ISO building environment standards.[44] It establishes the general principles of building environment design. It takes into account the need to provide a healthy indoor environment for the occupants as well as the need to protect the environment for future generations and promote collaboration among the various parties involved in building environmental design for sustainability. ISO16813 is applicable to new construction and the retrofit of existing buildings.[45]

The building environmental design standard aims to:[45]

  • provide the constraints concerning sustainability issues from the initial stage of the design process, with building and plant life cycle to be considered together with owning and operating costs from the beginning of the design process;
  • assess the proposed design with rational criteria for indoor air quality, thermal comfort, acoustical comfort, visual comfort, energy efficiency, and HVAC system controls at every stage of the design process;
  • iterate decisions and evaluations of the design throughout the design process.

United States

[edit]

Licensing

[edit]

In the United States, federal licensure is generally handled by EPA certified (for installation and service of HVAC devices).

Many U.S. states have licensing for boiler operation. Some of these are listed as follows:

Finally, some U.S. cities may have additional labor laws that apply to HVAC professionals.

Societies

[edit]

Many HVAC engineers are members of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). ASHRAE regularly organizes two annual technical committees and publishes recognized standards for HVAC design, which are updated every four years.[56]

Another popular society is AHRI, which provides regular information on new refrigeration technology, and publishes relevant standards and codes.

Codes

[edit]

Codes such as the UMC and IMC do include much detail on installation requirements, however. Other useful reference materials include items from SMACNA, ACGIH, and technical trade journals.

American design standards are legislated in the Uniform Mechanical Code or International Mechanical Code. In certain states, counties, or cities, either of these codes may be adopted and amended via various legislative processes. These codes are updated and published by the International Association of Plumbing and Mechanical Officials (IAPMO) or the International Code Council (ICC) respectively, on a 3-year code development cycle. Typically, local building permit departments are charged with enforcement of these standards on private and certain public properties.

Technicians

[edit]
HVAC Technician
Occupation
Occupation type
Vocational
Activity sectors
Construction
Description
Education required
Apprenticeship
Related jobs
Carpenter, electrician, plumber, welder

An HVAC technician is a tradesman who specializes in heating, ventilation, air conditioning, and refrigeration. HVAC technicians in the US can receive training through formal training institutions, where most earn associate degrees. Training for HVAC technicians includes classroom lectures and hands-on tasks, and can be followed by an apprenticeship wherein the recent graduate works alongside a professional HVAC technician for a temporary period.[57] HVAC techs who have been trained can also be certified in areas such as air conditioning, heat pumps, gas heating, and commercial refrigeration.

United Kingdom

[edit]

The Chartered Institution of Building Services Engineers is a body that covers the essential Service (systems architecture) that allow buildings to operate. It includes the electrotechnical, heating, ventilating, air conditioning, refrigeration and plumbing industries. To train as a building services engineer, the academic requirements are GCSEs (A-C) / Standard Grades (1-3) in Maths and Science, which are important in measurements, planning and theory. Employers will often want a degree in a branch of engineering, such as building environment engineering, electrical engineering or mechanical engineering. To become a full member of CIBSE, and so also to be registered by the Engineering Council UK as a chartered engineer, engineers must also attain an Honours Degree and a master's degree in a relevant engineering subject.[citation needed] CIBSE publishes several guides to HVAC design relevant to the UK market, and also the Republic of Ireland, Australia, New Zealand and Hong Kong. These guides include various recommended design criteria and standards, some of which are cited within the UK building regulations, and therefore form a legislative requirement for major building services works. The main guides are:

  • Guide A: Environmental Design
  • Guide B: Heating, Ventilating, Air Conditioning and Refrigeration
  • Guide C: Reference Data
  • Guide D: Transportation systems in Buildings
  • Guide E: Fire Safety Engineering
  • Guide F: Energy Efficiency in Buildings
  • Guide G: Public Health Engineering
  • Guide H: Building Control Systems
  • Guide J: Weather, Solar and Illuminance Data
  • Guide K: Electricity in Buildings
  • Guide L: Sustainability
  • Guide M: Maintenance Engineering and Management

Within the construction sector, it is the job of the building services engineer to design and oversee the installation and maintenance of the essential services such as gas, electricity, water, heating and lighting, as well as many others. These all help to make buildings comfortable and healthy places to live and work in. Building Services is part of a sector that has over 51,000 businesses and employs represents 2–3% of the GDP.

Australia

[edit]

The Air Conditioning and Mechanical Contractors Association of Australia (AMCA), Australian Institute of Refrigeration, Air Conditioning and Heating (AIRAH), Australian Refrigeration Mechanical Association and CIBSE are responsible.

Asia

[edit]

Asian architectural temperature-control have different priorities than European methods. For example, Asian heating traditionally focuses on maintaining temperatures of objects such as the floor or furnishings such as Kotatsu tables and directly warming people, as opposed to the Western focus, in modern periods, on designing air systems.

Philippines

[edit]

The Philippine Society of Ventilating, Air Conditioning and Refrigerating Engineers (PSVARE) along with Philippine Society of Mechanical Engineers (PSME) govern on the codes and standards for HVAC / MVAC (MVAC means "mechanical ventilation and air conditioning") in the Philippines.

India

[edit]

The Indian Society of Heating, Refrigerating and Air Conditioning Engineers (ISHRAE) was established to promote the HVAC industry in India. ISHRAE is an associate of ASHRAE. ISHRAE was founded at New Delhi[58] in 1981 and a chapter was started in Bangalore in 1989. Between 1989 & 1993, ISHRAE chapters were formed in all major cities in India.[citation needed]

See also

[edit]

References

[edit]
  1. ^ a b Ventilation and Infiltration chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, 2005
  2. ^ Designer's Guide to Ceiling-Based Air Diffusion, Rock and Zhu, ASHRAE, Inc., New York, 2002
  3. ^ Rezaie, Behnaz; Rosen, Marc A. (2012). "District heating and cooling: Review of technology and potential enhancements". Applied Energy. 93: 2–10. Bibcode:2012ApEn...93....2R. doi:10.1016/j.apenergy.2011.04.020.
  4. ^ Werner S. (2006). ECOHEATCOOL (WP4) Possibilities with more district heating in Europe. Euroheat & Power, Brussels. Archived 2015-09-24 at the Wayback Machine
  5. ^ Dalin P., Rubenhag A. (2006). ECOHEATCOOL (WP5) Possibilities with more district cooling in Europe, final report from the project. Final Rep. Brussels: Euroheat & Power. Archived 2012-10-15 at the Wayback Machine
  6. ^ Nielsen, Jan Erik (2014). Solar District Heating Experiences from Denmark. Energy Systems in the Alps - storage and distribution … Energy Platform Workshop 3, Zurich - 13/2 2014
  7. ^ Wong B., Thornton J. (2013). Integrating Solar & Heat Pumps. Renewable Heat Workshop.
  8. ^ Pauschinger T. (2012). Solar District Heating with Seasonal Thermal Energy Storage in Germany Archived 2016-10-18 at the Wayback Machine. European Sustainable Energy Week, Brussels. 18–22 June 2012.
  9. ^ "How Renewable Energy Is Redefining HVAC | AltEnergyMag". www.altenergymag.com. Retrieved 2020-09-29.
  10. ^ ""Lake Source" Heat Pump System". HVAC-Talk: Heating, Air & Refrigeration Discussion. Retrieved 2020-09-29.
  11. ^ Swenson, S. Don (1995). HVAC: heating, ventilating, and air conditioning. Homewood, Illinois: American Technical Publishers. ISBN 978-0-8269-0675-5.
  12. ^ "History of Heating, Air Conditioning & Refrigeration". Coyne College. Archived from the original on August 28, 2016.
  13. ^ "What is HVAC? A Comprehensive Guide".
  14. ^ Staffell, Iain; Brett, Dan; Brandon, Nigel; Hawkes, Adam (30 May 2014). "A review of domestic heat pumps".
  15. ^ (Alta.), Edmonton. Edmonton's green home guide : you're gonna love green. OCLC 884861834.
  16. ^ Bearg, David W. (1993). Indoor Air Quality and HVAC Systems. New York: Lewis Publishers. pp. 107–112.
  17. ^ Dianat, I.; Nazari, I. "Characteristic of unintentional carbon monoxide poisoning in Northwest Iran-Tabriz". International Journal of Injury Control and Promotion. Retrieved 2011-11-15.
  18. ^ ANSI/ASHRAE Standard 62.1, Ventilation for Acceptable Indoor Air Quality, ASHRAE, Inc., Atlanta, GA, US
  19. ^ Belias, Evangelos; Licina, Dusan (2024). "European residential ventilation: Investigating the impact on health and energy demand". Energy and Buildings. 304. Bibcode:2024EneBu.30413839B. doi:10.1016/j.enbuild.2023.113839.
  20. ^ Belias, Evangelos; Licina, Dusan (2022). "Outdoor PM2. 5 air filtration: optimising indoor air quality and energy". Building & Cities. 3 (1): 186–203. doi:10.5334/bc.153.
  21. ^ Ventilation and Infiltration chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, Georgia, 2005
  22. ^ "Air Change Rates for typical Rooms and Buildings". The Engineering ToolBox. Retrieved 2012-12-12.
  23. ^ Bell, Geoffrey. "Room Air Change Rate". A Design Guide for Energy-Efficient Research Laboratories. Archived from the original on 2011-11-17. Retrieved 2011-11-15.
  24. ^ "Natural Ventilation for Infection Control in Health-Care Settings" (PDF). World Health Organization (WHO), 2009. Retrieved 2021-07-05.
  25. ^ Escombe, A. R.; Oeser, C. C.; Gilman, R. H.; et al. (2007). "Natural ventilation for the prevention of airborne contagion". PLOS Med. 4 (68): e68. doi:10.1371/journal.pmed.0040068. PMC 1808096. PMID 17326709.
  26. ^ Centers For Disease Control and Prevention (CDC) "Improving Ventilation In Buildings". 11 February 2020.
  27. ^ Centers For Disease Control and Prevention (CDC) "Guidelines for Environmental Infection Control in Health-Care Facilities". 22 July 2019.
  28. ^ Dr. Edward A. Nardell Professor of Global Health and Social Medicine, Harvard Medical School "If We're Going to Live With COVID-19, It's Time to Clean Our Indoor Air Properly". Time. February 2022.
  29. ^ "A Paradigm Shift to Combat Indoor Respiratory Infection - 21st century" (PDF). University of Leeds., Morawska, L, Allen, J, Bahnfleth, W et al. (36 more authors) (2021) A paradigm shift to combat indoor respiratory infection. Science, 372 (6543). pp. 689-691. ISSN 0036-8075
  30. ^ Video "Building Ventilation What Everyone Should Know". YouTube. 17 June 2022.
  31. ^ CDC (June 1, 2020). "Center for Disease Control and Prevention, Decontamination and Reuse of Filtering Facepiece Respirators". cdc.gov. Retrieved September 13, 2024.
  32. ^ "What are Air Ducts? The Homeowner's Guide to HVAC Ductwork". Super Tech. Retrieved 2018-05-14.
  33. ^ "Ductless Mini-Split Heat Pumps". U.S. Department of Energy.
  34. ^ "The Pros and Cons of Ductless Mini Split Air Conditioners". Home Reference. 28 July 2018. Retrieved 9 September 2020.
  35. ^ "Ductless Mini-Split Air Conditioners". ENERGY SAVER. Retrieved 29 November 2019.
  36. ^ Moisture Control Guidance for Building Design, Construction and Maintenance. December 2013.
  37. ^ Chenari, B., Dias Carrilho, J. and Gameiro da Silva, M., 2016. Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews, 59, pp.1426-1447.
  38. ^ "Sustainable Facilities Tool: HVAC System Overview". sftool.gov. Retrieved 2 July 2014.
  39. ^ "Heating and Air Conditioning". www.nuclear-power.net. Retrieved 2018-02-10.
  40. ^ Keeping cool and green, The Economist 17 July 2010, p. 83
  41. ^ "Technology Profile: Demand Control Kitchen Ventilation (DCKV)" (PDF). Retrieved 2018-12-04.
  42. ^ a b Howard, J (2003), Guidance for Filtration and Air-Cleaning Systems to Protect Building Environments from Airborne Chemical, Biological, or Radiological Attacks, National Institute for Occupational Safety and Health, doi:10.26616/NIOSHPUB2003136, 2003-136
  43. ^ "The Inside Story: A Guide to Indoor Air Quality". 28 August 2014.
  44. ^ ISO. "Building environment standards". www.iso.org. Retrieved 2011-05-14.
  45. ^ a b ISO. "Building environment design—Indoor environment—General principles". Retrieved 14 May 2011.
  46. ^ "010.01.02 Ark. Code R. § 002 - Chapter 13 - Restricted Lifetime License".
  47. ^ "Boiler Professionals Training and Licensing".
  48. ^ "Michigan Boiler Rules".
  49. ^ "Minn. R. 5225.0550 - EXPERIENCE REQUIREMENTS AND DOCUMENTATION FOR LICENSURE AS AN OPERATING ENGINEER".
  50. ^ "Subchapter 24.122.5 - Licensing".
  51. ^ "Chapter 90 - BOILERS, PRESSURE VESSELS, AND REFRIGERATION".
  52. ^ "Article 33.1-14 - North Dakota Boiler Rules".
  53. ^ "Ohio Admin. Code 1301:3-5-10 - Boiler operator and steam engineer experience requirements".
  54. ^ "Subchapter 13 - Licensing of Boiler and Pressure Vessel Service, Repair and/or Installers".
  55. ^ "Or. Admin. R. 918-225-0691 - Boiler, Pressure Vessel and Pressure Piping Installation, Alteration or Repair Licensing Requirements".
  56. ^ "ASHRAE Handbook Online". www.ashrae.org. Retrieved 2020-06-17.
  57. ^ "Heating, Air Conditioning, and Refrigeration Mechanics and Installers : Occupational Outlook Handbook: : U.S. Bureau of Labor Statistics". www.bls.gov. Retrieved 2023-06-22.
  58. ^ "About ISHRAE". ISHRAE. Retrieved 2021-10-11.

Further reading

[edit]
[edit]

Media related to Climate control at Wikimedia Commons

Related media at Wikimedia Commons:

 

Photo
Photo
Photo
View GBP
Common signs include reduced cooling efficiency, longer time to cool your space, ice buildup on refrigerant lines, and hissing or bubbling noises from the unit. If you notice these symptoms, it could indicate low refrigerant levels.
Its recommended to hire a professional HVAC technician for recharging the refrigerant. Handling refrigerants requires specific tools and knowledge due to environmental regulations and potential safety hazards. A professional can also diagnose any underlying issues causing the low refrigerant level.
Ideally, an AC system should not lose refrigerant over time unless theres a leak. Recharging is not part of regular maintenance but rather a corrective action when theres a confirmed leak. Regular maintenance checks can help ensure there are no leaks and that your system operates efficiently.